BEAUFORTIA

INSTITUTE OF TAXONOMIC ZOOLOGY (ZOOLOGICAL MUSEUM) UNIVERSITY OF AMSTERDAM

A REVIEW OF THE COPEPODS ASSOCIATED WITH HOLOTHURIANS, INCLUDING NEW SPECIES FROM THE INDO-PACIFIC

ARTHUR G. HUMES
Boston University, Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts o2543, U.S.A.

Abstract

Copepods associated with Hulothuroidea are listed with their hosts and brief characterizations. A key to the genera of these copepods is provided. Twelve new species from the Indo-Pacific are described: Calypsarion bilobatum n. sp. from probably Holothuria atra, Chauliolobion imparile n. sp. from Bohadschia argus, Chauliolobion forcipatum n. sp. from Stichopus chloronotus, Chauliolobion tectuliferum n. sp. from Thelenota ananas, Lecanurius planifrontalis n. sp. from Actinopyga echinites and Actinopyga miliaris, Scambicornus batiolatus n. sp. from Holothtria atra and Thelenota ananas, Scambicornus disparilis n. sp. from Holothuria atra, Scambicornus proluxus n. sp. from Holothuria edulis, Scambicornus retrospiculus n. sp. from Stichopus variegatus, Scambicornus sentifer n. sp. from Labidodemas semperiantm, Nanaspis boholensis n. sp. from Stichopus variegatus, and Nanaspis moluccana n. sp. from Stichopus chloronotus. New host records for Scambicornus idoneus, Scambicornus lobulatus, Scambicornus modestus, Scambicornus poculiferus, Stellicola holothuriae, and Nanaspis tonsa, and new distribution records for 14 other species are included. Stellicola holothuriae (Ummerkutty, 1962) is redescribed from specimens found on Opheodesoma spectabilis. Keys to the species of Chauliolobion, Scambicornus, and Nanaspis are provided. Aspects of copepod-holothurian associations are discussed.

INTRODUCTION

The earliest record of copepods living with Holothuroidea is that of Hartmann (1856) who in his inaugural dissertation described a copepod from Labidoplax digitata (Montagu) at Trieste, naming it Colaceutes muelleri. This description, however, remained unknown in zoological literature for more than a century, until Stock (1968) pointed out the synonymy of Colaceutes with Synaptiphilus Canu \& Cuénot, 1892 . (The name Colaceutes is a nomen oblitum under article 23(b) of the International Code of Zoological Nomenclature adopted by the XV International Congress of Zoology, and has been suppressed under the plenary powers of the International Commission on Zoological Nomenclature in Opinion 815.) Since Hartmann's work 77 species of copepods have been reported as
associates of holothurians, most of them from hosts living in shallow water.

This review contains descriptions of ten new sabelliphilids, three in the genus Chauliolobion Humes, 1975, one in the genus Lecanurius Kossmann, 1877, one in the genus Calypsarion Humes \& Stock, 1972, five in the genus Scambicornus Heegaard, 1944, and two new nanaspidids in the genus Nanaspis Humes \& Cressey, 1959. New hosts are recorded for Scambicornus idoneus, Scambicornus lobulatus, Scambicornus poculiferus, Scambicornus modestus, Stellicola holothuriae, and Nanaspis tonsa, and new distribution records for I4 other species are cited. Stellicola holothuriae (Ummerkutty, 1962) is redescribed from specimens living with Opheodesoma spectabilis. All copepods known from holothurians are listed, with their hosts and sites of infestation if known. The
genera are briefly characterized and the species are accompanied by a few notes facilitating recognition. Such a synopsis has not previously been published, although a few partial lists exist. Barel \& Kramers (1977) listed copepods from holothurians in the northeast Atlantic area. Schirl (1973) listed the siphonostomes known at that time from the holothurians of the world.

MATERIALS AND METHODS

At the time of collection the holothurians were isolated, either individually or by species, in sea water in plastic bags in order to prevent accidental transfer of external copepods from one host to another.

Techniques employed for the recovery of copepods associated with holothurians vary according to the site of the copepods and the preference of the investigator. The new species of Scambicornus and Nanaspis reported here, living externally on the hosts, were removed by washing the hosts in approximately 5 per cent ethyl alcohol in sea water. In order to recover copepods living internally, such as Chauliolobion, Calypsarion, and Lecanurius, the body wall of the host was slit open before washing. The wash water was passed through a fine net (120 holes per 2.5 cm , each hole approximately IOO $\mu \mathrm{m}$ square) and the copepods were picked from the sediment retained in the net.

All figures have been drawn with the aid of a camera lucida. The letter after the explanation of each figure refers to the scale at which it was drawn. The abbreviations used are: $A_{1}=$ first antenna, $\mathrm{A}_{2}=$ second antenna, $\mathrm{L}=$ labrum, $\mathrm{MD}=$ mandible, MXPD $=$ maxilliped, and $\mathrm{P}_{1}=\operatorname{leg} \mathrm{I}$.

ACKNOWLEDGEMENTS

The copepods from the Moluccas were collected by the author during the Alpha Helix East Asian Bioluminescence Expedition, which was supported by the National Science Foundation of the United States under grants OFS 74 OI 830 and OFS 7402888 to the Scripps Institution of Oceanography and grant BMS 7423242 to the University of California, Santa Barbara.

I am indebted to Mr. Thomas Forhan, then with the Scripps Institution of Oceanography, for the collections from the Philippines, and to Dr. L. Can-
non, Queensland Museum, for specimens from Heron Island, Australia.

I thank Dr. Howard L. Sanders and Dr. J. Frederick Grassle, both of the Woods Hole Oceanographic Institution, for the opportunity to participate in Cruise 106 of R/V Chain in 1972.

The Academy of Natural Sciences of Philadelphia supported my field work in Madagascar in 1960.

Collections in Madagascar and the Seychelles in 1963-64 were made during the U.S. Program in Biology of the International Indian Ocean Expedition.

Copepods from Panama were collected in 1965 from R/V Anton Bruun while the ship was en route to carry out the Southeastern Pacific Biological Oceanographic Program of the National Science Foundation.

Collections at Eniwetok Atoll in 1969 were made possible by the support and facilities of the Eniwetok Marine Biological Laboratory.

West Indian collections in 1959 were supported by a grant (G-8628) from the National Science Foundation.

The study of the copepods was aided by NSF grant DEB 7711879.

I thank Dr. David L. Pawson, National Museum of Natural History, Smithsonian Institution, Washington, D.C., for the identification of the holothurians which were hosts for the new species and for advice concerning the correct names for the holothurians mentioned in this work.

SYSTEMATIC DESCRIPTIONS

Harpacticoida

Metidae Sars, i9ro
Metis Philippi, 1843
Body pear-shaped, often bright red in color. Prosome gibbous. Mouthparts degenerate. Leg I with 3 -segmented exopod and 2 -segmented endopod; exopod spines strong. Legs $2-4$ with 3 -segmented rami. Leg 5 small and rudimentary, sexually dimorphic.

Metis holothuriae (Edwards, 1891)
Abacola holothuriae Edwards, 1891.
(Genus synonymized by Gurney, 1927)
Host: Actinopyga agassizii (Selenka).

Site: Body cavity. Locality: Bahamas.
Notes: Length of $\circ 0.35-0.59 \mathrm{~mm}$, ${ }^{\text {o }} 0.3-0.56 \mathrm{~mm}$ (Lang, 1948). Occurs free-living in New England, Bahamas, France, the Mediterranean, Ceylon, Borneo, Lombok, Samoa, etc.

Tisbidae (Stebbing, 1910) Lang, 1948
Sacodiscus C. B. Wilson, 1924
Body flattened. First antenna 9 -segmented. Second antenna with prominent exopod. Legs $1-4$ with 3^{-} segmented rami. Endopod of leg I with first segment massive, following two segments small. Single egg sac.

Sacodiscus humesi Stock, 1960

Host: Holothuria (Holothuria) tubulosa Gmelin. Site: In washings.
Locality: Banyuls, France.
Notes: Length of two $9 \% 0.73 \mathrm{~mm}$ and 0.80 mm . ô unknown.

Tisbe Liljeborg, 1853
Body fusiform depressed. First antenna 8 -segmented, geniculate in δ. Second antenna with 4 -segmented exopod. Legs $1-4$ with 3 -segmented rami. Endopod of leg i longer than exopod and bearing two terminal elements; exopod with outer seta on second segment. Exopod of leg 5 elongate, linear. Single egg sac.

Tisbe cucumariae Humes, 1957
Host: Ocnus planci (Brandt).
Site: Integument.
Localities: Banyuls, France (Humes, 1957). Freeliving: Bermuda; Beaufort, North Carolina; Arcachon and Banyuls, France; Venice, Italy (Volk-mann-Rocco, 1973); Portugal (Vilela, 1968).
Notes: Length of $\oint 0.84 \mathrm{~mm}$, $\delta 0.84 \mathrm{~mm}$. Inner spine on first segment of endopod of leg 2 in δ slightly sinuous with pointed and recurved tip.

Tisbe furcata (Baird, 1837)
Host: Ocnus planci (Brandt).
Site: Body cavity.
Locality: Gulf of Naples (Monticelli, 1892).
Notes: Length of 90.7 -1. 5 mm (Lang, 1948). The identification by Monticelli as Tisbe furcata may
be in some doubt. Different species in the genus have been classified as T. furcata and the taxonomy of the genus is confused and complex (Volk-mann-Rocco, 1971; Coull, 1977). Volkmann-Rocco has not found this species in the Mediterranean Sea. The possibility remains that Monticelli's copepods may actually have been Tisbe cucumariae.

Tisbe holothuriae Humes, 1957
Host: Holothuria (Holothuria) stellati Delle Chiaje.
Site: Originally reported from anterior part of digestive tube, but corrected by Changeux (1960 , p. 18) to surface of integument.

Localities: Banyuls, France (Humes, 1957; Changeux, 1960). Free-living: Venice, Helgoland, Plymouth (Volkmann-Rocco, 197I); Portugal, Adriatic Sea (Petkovsky, 1964); Beaufort, North Carolina (Volkmann-Rocco, 1972); Woods Hole, Massachusetts (Coull, 1977).

Host: Holothuria (Holothuria) tubulosa Gmelin. Site: Body surface, among the podia and dorsal papillae.
Locality: Banyuls, France (Changeux, 1960).
Notes: Length of $\$ 0.93 \mathrm{~mm}$, $\hat{\delta} 0.64 \mathrm{~mm}$. Inner spine on first segment of endopod of leg 2 in δ strongly recurved throughout with slightly truncate tip.

Cyclopoida

Gnathostoma
Namakosiramiidae Ho \& Perkins, 1977
Namakosiramia Ho \& Perkins, 1977
Body minute, flattened dorsoventrally. First antenna 4 -segmented. Exopod of second antenna a compound seta. Mandible with two terminal spines and three basal setae. Leg a biramous with prehensile exopod. Leg 2 uniramous and prehensile. Legs 3, 4, and 5 reduced to small bipartite lobes bearing setae.

Namakosiramia californiensis Ho \& Perkins, 1977
Host: Stichopus parvimensis (Clark).
Site: In washings.
Locality: California.
Notes: Length of $Q^{2} 384 \mu \mathrm{~m}$, $\hat{\delta}$ unknown.

Poecilostoma

Sabelliphilidae Gurney, 1927
Calypsarion Humes \& Ho, 1969
Body modified, elongate, slender. Ventral keel on genital segment of P and on first postgenital segment of δ. First antenna 7 -segmented. Second antenna 4 -segmented, with claw on third segment. Legs 1-4 with 3 -segmented exopods and 2 -segmented endopods. Leg 4 endopod with formula o-I; I, III, I, I or o-i ; I, III, I.

Calypsarion bilobatum n. sp.

Figs. 1a-i, 2a-ai, 3 a-d
Type material. - I 9 from one black holothurian, probably Holothuria atra (Jaeger), North Point, Mahe Island, Seychelles, 14 February 1964. Holotype deposited in the Zoölogisch Museum, Amsterdam.
Female. - Body (figs. ia, rb) elongate and slender. Length (not including setae on caudal rami) 2.17 mm and greatest width 0.54 mm . Segment of leg I separated from head by a weak dorsal transverse furrow. Epimeral areas of segments of leg I-4 rounded. Ratio of length to width of prosome 2.07 : I. Ratio of length of prosome to that of urosome i.or: i.

Segment of leg 5 (fig. Ic) $176 \times 264 \mu \mathrm{~m}$. Genital segment in dorsal view $350 \times 380 \mu \mathrm{~m}$, broad in anterior two-thirds and narrow in posterior third. Genital segment in ventral view (fig. Id) showing large posteriorly directed pointed keel ornamented apically with setules (fig. re). In lateral view of genital segment (fig. If) length including keel $396 \mu \mathrm{~m}$ and greatest dorsoventral thickness $275 \mu \mathrm{~m}$. Genital areas located laterally near middle of segment. Each area (fig. If) with two smooth setae $33 \mu \mathrm{~m}$ and $30 \mu \mathrm{~m}$ and two prominent but unequal lobes (figs. ic, id). Three postgenital segments from anterior to posterior 153×164, 185×147, and $92 \times 156 \mu \mathrm{~m}$. Anal segment with row of minute spinules along posteroventral margin on both sides.

Caudal ramus (fig. Ig) moderately elongate, $166 \times 62 \mu \mathrm{~m}$, ratio of length to width 2.68: I . Outer lateral seta $107 \mu \mathrm{~m}$, outermost terminal seta $156 \mu \mathrm{~m}$, innermost terminal seta $180 \mu \mathrm{~m}$, and two
long median terminal setae (without usual "joints") $319 \mu \mathrm{~m}$ (outer) and $385 \mu \mathrm{~m}$ (inner). All five setae with extremely small lateral barbules. Dorsal seta $55 \mu \mathrm{~m}$ and smooth. Ramus lacking fine ornamentation.
Body surface with very few hairs (sensilla) as in figure га.

Egg sac unknown.
Rostrum weak and broadly rounded as in Ca lypsarion leprum Humes \& Ho, 1969.

First antenna (fig. in) $418 \mu \mathrm{~m}$ long. Lengths of seven segments (measured along their posterior nonsetiferous margins): 34 ($73 \mu \mathrm{~m}$ along anterior margin), $117,44,70,57,43$, and $31 \mu \mathrm{~m}$ respectively. Formula for armature: $4,13,6,3,4+1$ aesthete, $2+1$ aesthete, and $7+\mathrm{I}$ aesthete. All setae naked.
Second antenna (fig. ii) $300 \mu \mathrm{~m}$ long, including claw, and lacking fine ornamentation. Formula: 1 , $1,3+$ claw, and 7 . Claw $75 \mu \mathrm{~m}$ along its axis. Fourth segment approximately $34 \times 21 \mu \mathrm{~m}$. All setae smooth.

Labrum (fig. 2a) with two broad posteroventral lobes. Mandible (fig. 2b) with rounded hyaline prominence on convex margin. Broad distally attenuated blade with row of spinules along both margins, those spinules on concave margin fewer in number and stouter than those on convex margin. First maxilla (fig. 2c) with two setae. Second maxilla (fig. 2d) resembling that of Ca lypsarion sentosum Humes \& Ho, 1969. Maxilliped (fig. 2e) segmented and armed as in C. leprum, but terminal spiniform process longer than in that species.
Ventral area between maxillipeds and first pair of legs (fig. 2f) not protuberant (fig. Ib).
Legs I-4 (figs. 2g, 2h, 2i, 3 a) with 3 -segmented exopods and 2 -segmented endopods. Armature as follows (Roman numerals representing spines, Arabic numerals indicating setae):

[^0]

Fig. r. Calypsarion bilobatum n. sp., female. a, dorsal (A); b, lateral (A) ; c, urosome, dorsal (B) ; d, genital segment and first postgenital segment, ventral (B); e, keel on genital segment, ventral (C); f, segment of leg 5 and
genital segment, lateral (B) ; g, caudal ramus, dorsal (D); h, first antenna, ventral (D); i, second antenna, posterior (E).

Fig. 2. Calypsarion bilobatum n. sp., female. a, labrum, ventral (C) ; b, mandible, posterior (F) ; c, first maxilla, anterior (F) ; d, second maxilla, posterior (C) ; e, maxilliped, posterior (C); f, area between maxillipeds and first
pair of legs, ventral (D); g, leg i and intercoxal plate, anterior (D) ; h, leg 2, anterior (D) ; i, endopod of leg 3, anterior (D).

Fig. 3. Calypsarion bilobatum n. sp., female. a, leg 4 and intercoxal plate, with second segment of endopod bearing extra seta, anterior (D) ; b, right endopod of leg 4, nor-
mal condition, anterior (D) ; c, abnormal right exopod of leg 4, anterior (D); d, leg 5, ventral (G).
on the genital area, and by the rounded hyaline prominence on the convex side of the mandible.

Calypsarion carinatum (Stock, 1969)
Scambicornus carinatus Stock, 1969.
Host: Stichopus monotuberculatus (Quoy \& Gaimard).
Site: Internal, ejected from host.
Locality: Dahlak Archipelago, Ethiopia.
Notes: Length of $29 \% 1.88 \mathrm{~mm}$ and I .6 Imm , o I .45 mm . First maxilla with two terminal setae. Distal spine on posterior surface of second segment of second maxilla attenuated and laterally barbed. Genital segment of \mathcal{Y} in dorsal view with more or less rounded lateral margins.

Calypsarion leprum Humes \& Ho, 1969
Hosts: Actinopyga miliaris (Quoy \& Gaimard), Actinopyga lecanora (Jaeger), Actinopyga mauritiana (Quoy \& Gaimard).
Site: Internal.
Locality: Region of Nosy Bé, northwestern Madagascar.
Notes: Length of $ㅇ+1.22 \mathrm{~mm}$, $\hat{\text { o }} \mathrm{I} .39 \mathrm{~mm}$. First
maxilla with one terminal seta. Distal spine on posterior surface of second segment of second maxilla club-shaped and spinulose. Genital segment of \wp in dorsal view expanded in anterior half, posterior half slender. Inner surface of second segment of δ maxilliped with one row of obtuse spines and two setae.

Calypsarion sentosum Humes \& Ho, 1969

Host: Bohadschia marmorata Jaeger.
Site: Internal.
Locality: Region of Nosy Bé, northwestern Madagascar.
Notes: Length of $i \mathrm{I} .45 \mathrm{~mm}$, ot I .4 r mm . First maxilla with two terminal setae. Distal spine on posterior surface of second segment of second maxilla attenuated and bilaterally barbed. Genital segment of $¢$ in dorsal view expanded in anterior third, posterior two-thirds slender. Maxilliped of δ with inner margin of second segment greatly produced to form a long scolex-shaped lobe crowned with spines.

Calypsina Humes \& Stock, 1972

Body cyclopiform. First antenna 7 -segmented. Second antenna 4 -segmented, with claw on third segment. Legs $\mathrm{I}-3$ with 3 -segmented exopods and 2 segmented endopods. Leg 4 with both rami 3 -segmented. Leg 1 endopod with o-r; I, 5, I. Leg 2 endopod with o-r; I, II, 3, I. Leg 3 endopod with o-r; I, III, 2, I. Leg 4 endopod with o-o; o-o; I, III, $\mathbf{~ I . ~}$

Calypsina changeuxi (Stock \& Kleeton, 1963)
Preherrmannella changeuxi Stock \& Kleeton, 1963; Scambicornus changeuxi (Humes, 1967).

Host: Holothuria (Holothuria) tubulosa Gmélin Site: Esophagus.
Locality: Banyuls, France (Stock \& Kleeton, 1963).

Host: Holothuria (Holothuria) stellati Delle Chiaje.
Site: Esophagus and genital tube.
Locality: Banyuls, France (Changeux, 1960).
Notes: Length: of $\$ 0.765 \mathrm{~mm}$, δ o 0.60 mm . Rostrum a pointed beak. See Humes \& Stock (1973). According to Stock \& Kleeton (1963) this is the
"poecilostome copepod" mentioned by Changeux (1960) on p. 55 and in footnotes on pp. 109, iro, ini, found by him at Banyuls in both H. tubulosa and H. stellati.

Caribulus Humes \& Stock, 1972

Body cyclopiform. First antenna 7 -segmented. Second antenna 4 -segmented, with claw on third segment. Legs $\mathrm{I}-4$ in 9 with 3 -segmented rami, with leg 4 endopod o-I; o-I; I, II, II. Legs I-4 in $\hat{\delta}$ with 3 -segmented exopods and 2 -segmented endopods, with leg 4 endopod o-i; I, II, II, I.

Caribulus sculptus (Humes, 1969)
Scambicormus sculptus Humes, 1969.
Host: Isostichopus badionotus (Selenka).
Site: Body surface.
Localities: Barbados, Puerto Rico, Jamaica, Bahamas (Humes, 1969).

Host: Holothuria (Halodeima) mexicana (Ludwig).
Site: Body surface.
Localities: Bahamas, Jamaica, Curaçao, Bonaire (Humes, 1969).

Host: Holothuria (Halodeima) grisea (Selenka)
Site: Body surface.
Localities: Jamaica, Bonaire (Humes, 1969).
Host: Actinopyga agassizii (Selenka)
Site: Body surface.
Localities: Bahamas, Jamaica (Humes, rg69).
Notes: Length of $\dagger \mathrm{f} .18 \mathrm{~mm}$, $\hat{0} 0.98 \mathrm{~mm}$. Second segment of $\widehat{\delta}$ maxilliped with inner excavated prominence.

Caribulus sp.

Scambicormus sp. in Humes, 1969.
Host: Isostichopus badionotus (Selenka)
Site: Body surface.
Localities: Barbados, Jamaica, Bahamas (Humes, 1969).

Host: Holothuria (Halodeima) mexicana (Ludwig).
Site: Body surface.
Localities: Bahamas, Jamaica, Curaçao (Humes, 1969).

New record: 16 ô $\widehat{0}$ from three Holothuria mexicana, in 0.5 m , Holandes Cay, near Cape San Blas, Panama, $8^{\circ} 37.6^{\prime} \mathrm{N}, 78^{\circ} 5^{\prime} \mathrm{W}$, 18 September 1965 .

Host: Actinopyga agassizii (Selenka).
Site: Body surface.
Localities: Bahamas, Jamaica (Humes, 1969).
Notes: Length of $\delta 0.63 \mathrm{~mm}$. Second segment of maxilliped lacking inner excavated prominence. of unknown.

Chauliolobion Humes, 1975

Body modified, elongate. First antenna 7 -segmented. Second segment 4 -segmented, with one claw on third segment. Mandible with one or two long setiform processes arising near base of lash. Legs 1-4 in 9 with 3 -segmented rami; in ot with 3 -segmented exopods but 2 -segmented endopods. In both sexes a long digitiform process on distal outer corner of coxa of legs 2 and 3 . Leg 5 placed ventrally.

Chauliolobion bulbosum Humes, 1975
Host: Actinopyga echinites (Jaeger).
Site: Internal.
Locality: Region of Nouméa, New Caledonia (Humes, 1975).

Host: Actinopyga palauensis Panning.
Site: Internal.
Locality: Region of Nouméa, New Caledonia (Humes, 1975).
Notes: Length of $¢ \mathrm{~F} .27 \mathrm{~mm}$, $\delta 1.13 \mathrm{~mm}$. Caudal ramus in 9 with ratio of length to width r .66 : I , in ot i.9I: I . Inner coxal seta on legs $\mathrm{I}-3$ swollen proximally. Intercoxal plate of legs 1 and 2 with pair of pointed ventral processes. Leg 4 endopod with o-r; o-r; II, I. Free segment of leg 5 in O with slender seta and stout spiniform element. Claw of δ maxilliped with small teeth along proximal concave margin.

Chauliolobion imparile n. sp.
Figs. 4a-f, 5a-k, 6a-e, 7a-h
Type material. - 19 여, 14 ô δ, and I copepodid from two holothurians, Bohadschia argus (Jaeger), in 4 m , Poelau Marsegoe, western Ceram, $2^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}$, $128^{\circ} 03^{\prime} 30^{\prime \prime} \mathrm{E}$, 55 May 1978. Holotype

posited in the Zoologisch Museum, Amsterdam; the remaining paratypes (dissected) in the collection of the author.
Other specimens (all from Bohadschia argus). 2 오, 2 ô ô from 1 host, in 3 m , Karang Mie, eastern Halmahera, $00^{\circ} 20^{\prime} 07^{\prime \prime} \mathrm{N} 128^{\circ} 25^{\prime} 00^{\prime \prime} \mathrm{E}$, I9 May 1975; 2 여, 3 ô ot from 2 hosts, in 3 m , Poelau Parang, eastern Ceram, $3^{\circ} 17^{\prime} \mathrm{OO}^{\prime \prime} \mathrm{S}$ ${ }^{1} 30^{\circ} 44^{\prime} 48^{\prime \prime} \mathrm{E}, 23$ May 1975.
Female. - Body (figs. 4a, 4b) elongate and slender. Length (not including setae on caudal rami) 0.95 mm ($0.90-0.97 \mathrm{~mm}$) and greatest width 0.2 I mm ($0.20-0.23 \mathrm{~mm}$), based on 10 specimens in lactic acid. Ratio of length to width of prosome 2.25: I. Ratio of length of prosome to that of urosome I.18: I.

Segment of leg 5 (fig. 4c) $85 \times 146 \mu \mathrm{~m}$. Genital segment ${ }_{5} 5^{1} \times{ }_{5} 53 \mu \mathrm{~m}$, as long as wide. Genital areas situated laterally at middle of segment. Each area (fig. 4d) with two unequal naked setae $33 \mu \mathrm{~m}$ and $16 \mu \mathrm{~m}$ and a row of spinules. Three postgenital segments from anterior to posterior 66×83, 60×69, and $30 \times 65 \mu \mathrm{~m}$. Genital and postgenital segments with transverse row of spines posteroventrally.

Caudal ramus (fig. 4e) short, $37 \times 29 \mu \mathrm{~m}$, ratio 1.27: 1. Outer lateral seta $50 \mu \mathrm{~m}$, dorsal seta $27 \mu \mathrm{~m}$, outermost terminal seta (inserted somewhat ventrally) $70 \mu \mathrm{~m}$, and innermost terminal seta $5^{8} \mu \mathrm{~m}$. All these setae with lateral spinules except naked dorsal seta. Two stout median spinulose terminal setae $146 \mu \mathrm{~m}$ (outer) and $179 \mu \mathrm{~m}$ (inner), both inserted between slight dorsal and ventral flanges. Ramus ornamented ventrally with spinules near insertions of setae (fig. 4c).
Body surface with very few hairs (sensilla) as in figure 4a.

Egg sac (fig. 4f) containing one, two, or three relatively large eggs, their length $169-187 \mu \mathrm{~m}$ and width II4- $120 \mu \mathrm{~m}$.

Rostral area (fig. 5a) weakly developed.
First antenna (fig. 5 b) $174 \mu \mathrm{~m}$ long. Lengths of its seven segments (measured along their posterior nonsetiferous margins): 17.5 ($30 \mu \mathrm{~m}$ along anterior margin), $3 \mathrm{I}, 16.5,28.5,30,16$, and $14 \mu \mathrm{~m}$ respectively. Formula for armature: 4, 13, 6, 3, 4 +I aesthete, $2+\mathrm{I}$ aesthete, and $7+\mathrm{I}$ aesthete. Several setae with small spinules along one side.

Fig. 4. Chauliolobion imparile n. sp., female. a, dorsal (B); 5 and genital segment, lateral (C); e, caudal ramus, dorsal b, lateral (B) ; c, urosome, ventral (E) ; d, segment of leg (F) ; f, egg sacs from one female, dorsal (B).

Fig. 6. Chauliolobion imparile n. sp., female. a, leg 1 and intercoxal plate, anterior (G); b, leg 2, anterior (G); c, (G); e, leg 5, ventral (G).

Fig. 7. Chauliolobion imparile n. sp., male. a, dorsal (B) ; b, urosome, dorsal (E) ; c, maxilliped, postero-inner (G) ; d , endopod of $\operatorname{leg} \mathrm{I}$, anterior (G) ; e, endopod of $\operatorname{leg} 2$,
anterior (G) ; f, endopod of leg 3 , anterior (G) ; g, endopod of leg 4, anterior (G); h, leg 6, ventral (C).

All segments with one or more small spines as illustrated.

Second antenna (figs. 5c, 5d) 4-segmented, 138 $\mu \mathrm{m}$ long including claw. Armature: $\mathrm{I}, \mathrm{I}, 3+$ claw, and 7. All setae smooth. Claw $43 \mu \mathrm{~m}$ long. Orna-
mentation resembling that in other species of genus.
Labrum (fig. 5e) with two short widely separated posteroventral lobes. Mandible (fig. 5f) similar to that in congeners, but convex side of base bearing
a small double spined process distal to two long setiform processes. Paragnath (fig. 5g), first maxilla (fig. 5 h), second maxilla (fig. 5^{i}), and maxilliped (fig. 5 j) resembling in major respects those of other species of Chauliolobion.
Ventral area between maxillipeds and first pair of legs (fig. 5 k) slightly protuberant (fig. 4b).

Legs $\mathrm{I}-4$ (figs. $6 \mathrm{a}, 6 \mathrm{~b}, 6 \mathrm{c}, 6 \mathrm{~d}$) with 3 -segmented rami throughout. Armature as follows (Roman numerals indicating spines, Arabic numerals representing setae):

```
\(\mathrm{P}_{1}\) coxa o-I basis too exp I-o; I-I; III, I, 4
        enp o-I; o-I; I, 5
\(\mathrm{P}_{2}\) coxa o-I basis I-o exp I-o; I-I; III, I, 5
        enp o-1; 0-2; I, II, 3
\(\mathrm{P}_{3}\) coxa 0-1 basis I-o exp I-o; I-I; III, I, 5
        enp o-i; o-2; I, I, 2
\(\mathrm{P}_{4}\) coxa o-I basis r-o exp I-o; I-I; II, I, 5
        enp o-I; o-I; I, 2
```

Outer distal corner of coxa of leg 2 (fig. 6b) bearing a long fingerlike lobe, $90 \mu \mathrm{~m}$, longer than exopod ($78 \mu \mathrm{~m}$). Corresponding lobe in leg 3 (fig. $6 \mathrm{c})$ short, $18 \mu \mathrm{~m}$. Legs I and 4 without such coxal lobes. Leg 4 exopod $88 \mu \mathrm{~m}$ long and endopod 57 $\mu \mathrm{m}$. Row of small spinules along distal anterior edge of coxa, present in legs $1-3$, absent in leg 4. Inner coxal seta and endopodal setae of leg 4 more sparsely haired than in exopod of leg 4 or in preceding legs.

Leg 5 (fig. 6e) placed ventrally. Free segment $30 \times 18 \mu \mathrm{~m}$, ratio 1.67: . Outer terminal seta $52 \mu \mathrm{~m}$ and smooth, inner terminal seta about $65 \mu \mathrm{~m}$ with short barbules. Row of spinules near insertion of outer terminal seta. Seta on body near insertion of free segment $36 \mu \mathrm{~m}$ and smooth.

Leg 6 represented by two setae on genital area (fig. 4d).

Color in life in transmitted light opaque gray, eye red, egg sacs light gray.
Male. - Body (fig. 7a) elongate. Length (excluding setae on caudal rami) 0.87 mm ($0.80-0.92$ mm) and greatest width $0.18 \mathrm{~mm}(0.18-0.19 \mathrm{~mm})$, based on 10 specimens in lactic acid. Ratio of length to width of prosome $2.8 \mathrm{I}: \mathrm{I}$. Ratio of length of prosome to that of urosome I.I2: 1 .

Segment of leg 5 (fig. 7 b) $57 \times \mathrm{I} 33 \mu \mathrm{~m}$. Genital segment ${ }^{5} 56 \times{ }^{151} \mu \mathrm{~m}$, about as long as wide, lacking transverse posteroventral row of spines
seen in female. Four postgenital segments from anterior to posterior $53 \times 86,61 \times 73,52 \times 65$, and $29 \times 6 \mathrm{r} \mu \mathrm{m}$, each with posteroventral row of spines as in female.

Caudal ramus resembling that of female but smaller, $34 \times 26 \mu \mathrm{~m}$.

Body surface with very few hairs (sensilla) as in figure 7 a .

Rostral area, first antenna, second antenna, labrum, mandible, paragnath, first maxilla, and second maxilla as in female. Maxilliped (fig. 7c) 4^{-} segmented (assuming that proximal part of claw represents fourth segment). Second segment with two small inner setae more or less obscured by patch of short spines. Claw $95 \mu \mathrm{~m}$ along its axis, with narrow striated fringe along concave margin, and bearing two very unequal proximal setae. No terminal lamella.

Ventral area between maxillipeds and first pair of legs as in female.

Legs i-4 resembling those of female except for endopods having two segments instead of three (figs. $7 \mathrm{~d}, 7 \mathrm{e}, 7 \mathrm{f}, 7 \mathrm{~g}$). Second segment formed by apparent fusion of two distal segments, in legs 3 and 4 original separation indicated by row of few small spinules.

Leg 5 (fig. 7b) similar to that of female, its free segment $23 \times 15.5 \mu \mathrm{~m}$.

Leg 6 (fig. 7 h) a posteroventral flap on genital segment bearing two unequal smooth setae $41 \mu \mathrm{~m}$ and $24 \mu \mathrm{~m}$ and a row of spinules.

Spermatophore unknown.
Color as in female.
Etymology. - The specific name imparile, Latin meaning unequal or different, alludes to the great difference in size of the outer coxal lobes in legs 2 and 3 .
Comparison with other species of Chauliolobion. The genus Chauliolobion Humes, 1975, includes two previously described species, Chauliolobion bulbosum Humes, 1975, from Actinopyga echinites (Jaeger) and Actinopyga palauensis Panning in New Caledonia and Chauliolobion halodeimatis Humes, 1975, from Holothuria (Halodeima) atra Jaeger also in New Caledonia. Chauliolobion imparile may be distinguished from these species by the nature of the outer coxal lobes in legs 2 and 3 . These lobes are very unequal in size in C. imparile,
but more nearly equal in C. bulbosum and C. halodeimatis.

The two New Caledonian species differ in other ways from C. imparile. In C. bulbosum the third segment of the endopod of $\operatorname{leg} 4$ has the formula II, I, and one of the terminal elements of the free segment of leg 5 is stout and spiniform. In C. halodeimatis the caudal ramus is more elongate than in the new species, with a ratio of length to width of 2.12: I .

Chauliolobion forcipatum n. sp.
Figs. 8a-j, 9a-g, IOa-f
Type material. - 6 오, 4 os from one holothurian, Stichopus chloronotus Brandt, in 2 m , Karang Mie, east central Halmahera, Moluccas, $0 o^{\circ}$ $20^{\prime} 07^{\prime \prime} \mathrm{N}, 128^{\circ} 25^{\prime} \mathrm{O} 0^{\prime \prime} \mathrm{E}$, 19 May 1975. Holotype 9 , allotype, and 4 paratypes (2 여, $2 \delta^{\circ} \delta^{\circ}$) deposited in the Zoologisch Museum, Amsterdam; the remaining paratypes (dissected) in the collection of the author.
Other specimens. - I 9 , 1 ô from one Stichopus chloronotus, in 2 m , Karang Mie, east central Halmahera, 19 May 1975.
Female. - Body form similar to that of Chauliolobion imparile. Length (not including setae on caudal rami) 1.37 mm ($\mathrm{r} .30-1.40 \mathrm{~mm}$) and greatest
 cimens in lactic acid.

Segment of leg 5 (fig. 8a) $125 \times 188 \mu \mathrm{~m}$. Between this segment and genital segment an incomplete ventral sclerite. Genital segment 213×230 $\mu \mathrm{m}$, in dorsal view broadest in its anterior half. Genital areas situated dorsolaterally near middle of segment (fig. 8b). Each area bearing two small spines about $8 \mu \mathrm{~m}$ long (fig. 8c). Three postgenital segments from anterior to posterior $78 \times$ in3, 65×88, and $60 \times 84 \mu \mathrm{~m}$. Genital and postgenital segments with transverse rows of spines posteroventrally, these spines weaker than in Chauliolobion imparile.

Caudal ramus (fig. 8 d) short, $50 \times 35 \mu \mathrm{~m}$, ratio I.43: I. Outer lateral seta $44 \mu \mathrm{~m}$, outermost terminal seta $36 \mu \mathrm{~m}$, and innermost terminal seta $37 \mu \mathrm{~m}$, all three setae bilaterally barbed. Dorsal seta $20 \mu \mathrm{~m}$ and naked. Outermost terminal seta $81 \mu \mathrm{~m}$ and innermost terminal seta $138 \mu \mathrm{~m}$, both setae spinulose. Ramus ornamented subterminally with ventral
rows of delicate spinules as indicated in figure.
Body surface with very few hairs (sensilla) as in C. imparile.

Egg sac unknown.
Rostral area as in C. imparile.
First antenna (fig. 8e) $340 \mu \mathrm{~m}$ long. Lengths of seven segments (measured along their posterior nonsetiferous margins): 33 ($65 \mu \mathrm{~m}$ along its anterior margin), $57,26,47,63,49$, and $34 \mu \mathrm{~m}$ respectively. Formula for armature as in C. imparile. Setae smooth except for long terminal seta with long unilateral spinules. Fifth and seventh segments with row of small ventral spinules.

Second antenna (fig. 8f) with claw relatively short, $37 \mu \mathrm{~m}$. Armature as in C. imparile. Second segment lacking inner spinules.

Labrum as in C. imparile. Mandible (fig. 8 g) with only one long outer setiform process on basal area. Paragnath and first maxilla as in C. imparile. Second maxilla (fig. 8h) with spines on lash longer than in C. imparile. Maxilliped (fig. 8i) with third segment stouter and shorter than in C. imparile.

Area between maxillipeds and first pair of legs (fig. 8 j) slightly protuberant.

Legs i-4 (figs. 9a, 9b, 9c, 9d) segmented and armed as in C. imparile, except for third segment of endopod of leg 4. Two distal spines on third exopod segment of leg I recurved and opposing each other (fig. 9a). Leg 2 and 3 bearing on outer distal corner of coxa a long fingerlike lobe about $84 \mu \mathrm{~m}$, distinctly shorter than exopod. Leg 4 (fig. 9d) with exopod $\mathrm{I} 30 \mu \mathrm{~m}$ long and endopod $78 \mu \mathrm{~m}$. Third segment of endopod with three spines 13,25 , and $6.5 \mu \mathrm{~m}$ from outer to inner, two outer spines finely barbed, innermost spine weak and smooth.

Leg 5 (fig. 9e) placed ventrally as in C. imparile. Free segment $46 \times 25 \mu \mathrm{~m}$, ratio i. 45 : i. Outer terminal seta $31 \mu \mathrm{~m}$ and smooth. Inner terminal element spiniform, $26 \mu \mathrm{~m}$, very finely barbed. Row of small spinules ventrally near insertion of both terminal elements. Seta on body near insertion of free segment $25 \mu \mathrm{~m}$ and smooth.

Leg 6 represented by two small spines on genital area (fig. 8c).

Color in life in transmitted light opaque gray, eye red.
Male. - Body as in C. imparile. Length (not including setae on caudal rami) 1.15 mm (1.13-1.19

Fig. 8. Chauliolobion forcipatum n. sp., female. a, urosome, ventral (B) ; b, segment of leg 5 and genital segment, lateral (D) ; c, genital area, dorsal (C) ; d, caudal ramus, dorsal (G) ; e, first antenna, ventral (E) ; f, second antenna,
posterior (C); g, mandible, posterior (F) ; h, second maxilla, anterior (F) ; \mathbf{i}, maxilliped, anterior (F) ; \mathfrak{j}, area between maxillipeds and first pair of legs, ventral (E).

Fig. 9. Chauliolobion forcipatum n. sp., female. a, leg I and intercoxal plate (C); b, leg 2, anterior (C); c, endopod of leg 3, anterior (C); d, leg 4 and intercoxal plate,
anterior (C) ; e, leg 5, ventral (C). Male: f, urosome, dorsal (D) ; g, maxilliped, postero-inner (G).

Fig. 10. Chauliolobion forcipatum n. sp., male. a, endopod of leg 1 , anterior (G); b, endopod of leg 2, anterior (G);
mm) and greatest width 0.26 mm ($0.25-0.26 \mathrm{~mm}$), based on three specimens in lactic acid.

Segment of leg 5 (fig. 9f) $78 \times 125 \mu \mathrm{~m}$. Genital segment $187 \times 156 \mu \mathrm{~m}$, longer than wide, lacking transverse posteroventral row of spines. Four postgenital segments from anterior to posterior $78 \times 94,73 \times 83,62 \times 70$, and $42 \times 68 \mu \mathrm{~m}$. First three segments with sparse posteroventral spines and anal segment with posteroventral spinules.
Caudal ramus resembling that of female, but smaller, $39 \times 29 \mu \mathrm{~m}$.
Body surface with very few hairs (sensilla) as in female.
Rostral area, first antenna, second antenna, labrum, mandible, paragnath, first maxilla, and second maxilla as in female. Maxilliped (fig. 9 g) with second segment having on inner surface two small setae and group of conspicuous spines graduating distally to smaller size. Claw $147 \mu \mathrm{~m}$ along its axis.

Ventral area between maxillipeds and first pair of legs as in female.
c, endopod of leg 3, anterior (G); d, endopod of leg 4, anterior (G) ; e, leg 5, ventral (G); f, leg 6, ventral (C).

Legs I-4 resembling those of female except for endopods having two segments instead of three (figs. Ioa, Iob, Ioc, Iod). Endopod of leg 2 (fig. rob) having a distal recurved spiniform process. Distal segment of endopod of leg 4 bearing from outer to inner two unequal barbed spines, a weak slender smooth spine, and a plumose seta.
Leg 5 (fig. ioe) similar to that of female, its free segment $32 \times 17.5 \mu \mathrm{~m}$.
Leg 6 as in figure rof.
Spermatophore unknown.
Color as in female.
Etymology. - The specific name forcipatum, derived from Latin forceps meaning forceps or tongs and the suffix-atus meaning provided with, refers to the shape of the two terminal spines on the exopod of leg I.
Comparison with other species of Chauliolobion. Chauliolobion forcipatum may be distinguished from its three previously described congeners by the two long forceps-like spines on the third exopod segment of leg 1 , and by the three spines on the third endopod segment of leg 4 (the innermost
spine much smaller and weaker than the others). The mandible of the new species has only one long setiform process on the convex edge instead of two processes as in other species.

Chauliolobion halodeimatis Humes, 1975
Host: Holothuria (Halodeima) atra (Jaeger). Site: Internal.
Locality: Region of Nouméa, New Caledonia (Humes, 1975).
Notes: Length of $O_{\text {r }}$ r.OI mm, $\delta 0.92 \mathrm{~mm}$. Caudal ramus in q with ratio 2.12 : 1 , in δ same. Inner coxal seta on legs 1-3 not swollen. Intercoxal plate of legs I and 2 lacking pointed processes. Leg 4 endopod with o-r; o-I; I, 2. Free segment of leg 5 with two setae. Claw of δ maxilliped with smooth concave surface.

Chauliolobion tectuliferum n. sp.
Figs. ina-k, iza-h, iza-f
Type material. - 5 여, i ot from one holothurian, Thelenota ananas (Jaeger), in 4 m , Poelau Marsegoe, western Ceram, $2^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}$, $128^{\circ} \mathrm{O} 3^{\prime} 30^{\prime \prime} \mathrm{E}$, is May 1975. Holotype 9 , allotype (dissected), and 2 paratypes deposited in the Zoollogisch Museum, Amsterdam; the remaining two paratypes (dissected) in the collection of the author.
Female. - Body (fig. ina) slender and elongate. Length (not including setae on caudal rami) I. 32 mm ($\mathrm{I} .27-\mathrm{I} .43 \mathrm{~mm}$) and greatest width 0.29 mm ($0.28-0.32 \mathrm{~mm}$), based on five specimens in lactic acid. Ratio of length to width of prosome 2.38: I . Ratio of length of prosome to that of urosome 1.20: I.

Segment of leg 5 (fig. irb) $91 \times 159 \mu \mathrm{~m}$. Genital segment $216 \times 177 \mu \mathrm{~m}$, longer than wide, with irregular lateral margins. Genital areas situated laterally near middle of segment. Each genital area (fig. IIc) with two nearly equal setae about $16 \mu \mathrm{~m}$. Three postgenital segments from anterior to posterior 96×114, 104 $\times 99$, and $47 \times 86 \mu \mathrm{~m}$. Genital and three postgenital segments with posteroventral spines as indicated.

Caudal ramus (figs. ind, ire) $55 \times 35 \mu \mathrm{~m}$, ratio 1.57: I. Outer lateral seta $33 \mu \mathrm{~m}$, dorsal seta $28 \mu \mathrm{~m}$, and outermost terminal seta $30 \mu \mathrm{~m}$, all smooth. Innermost terminal seta $32 \mu \mathrm{~m}$, with a few proximal inner hairs. Two stout median spinulose
terminal setae $65 \mu \mathrm{~m}$ (outer) and 91 $\mu \mathrm{m}$ (inner). Proximal part of dorsal seta covered dorsally by a flange or roof (fig. Ite). Spinules near insertions of lateral seta and outermost terminal seta. Ramus with ventral subterminal patch of spinules.

Body surface with very few hairs (sensilla) as indicated in figure ira.

Egg sac unknown.
Rostral area as in Chauliolobion imparile.
First antenna (fig. iff) $203 \mu \mathrm{~m}$ long. Lengths of seven segments (measured along their posterior nonsetiferous margins): 19 ($39 \mu \mathrm{~m}$ along anterior margin), $40,25,29,33,20$, and $17 \mu \mathrm{~m}$ respectively. Formula for armature as in C. imparile. Several setae with spinules as illustrated. First four segments with small spines as shown in figure.

Second antenna (fig. IIg) 4 -segmented, $\mathrm{I} 55 \mu \mathrm{~m}$ long including claw. Armature as in C. imparile. Claw $3 \mathrm{I} \mu \mathrm{m}$ long. All setae smooth.

Labrum (fig. IIh) truncate posteroventrally. Mandible (fig. IIi), paragnath (fig. IIh), first maxilla (fig. I Ik), second maxilla (fig. I2a), and maxilliped (fig. i2b) resembling those in congeners. Circlet of spinules near insertion of mandible (fig. IIj).

Ventral area between maxillipeds and first pair of legs as in figure 12c, and only slightly protuberant.

Legs $\mathrm{I}-4$ (figs. 12d, 12e, 12f, 12 g) segmented and armed as in C. imparile, but endopod of leg 4 with third segment having I, I, I, these spines barbed and nearly equal in length. Coxae of legs 2 and 3 with long outer digitiform lobes as in C. forcipatum.

Leg 5 (fig. 12 h) with moderately elongate free segment $36 \times 19 \mu \mathrm{~m}$, ratio 1.89: 1. Both terminal setae about $22 \mu \mathrm{~m}$, inner seta slightly spiniform and unilaterally armed with spinules, outer seta smooth but with row of minute spinules near its insertion. Dorsal seta smooth and $25 \mu \mathrm{~m}$ long.

Leg 6 represented by two small setae on genital area (fig. IIC).

Color in life in transmitted light dark brown, eye reddish but obscure.
Male. - Body elongate as in C. imparile. Length 1.17 mm and greatest width 0.25 mm .

Segment of leg 5 (fig. i3a) $68 \times \mathrm{I} 35 \mu \mathrm{~m}$. Genital segment $195 \times 180 \mu \mathrm{~m}$. Four postgenital

Fig. II. Chauliolobion tectuliferum n. sp., female. a, dorsal (I); b, urosome, ventral (D); c, segment of leg 5 and genital area, lateral (E); d, caudal ramus, dorsal (G); e, caudal ramus, lateral (G); f, first antenna, dorsal (C);
g , second antenna, posterior (G); h, labrum and paragnaths, ventral (G); i, mandible, posterior (F) ; j, circlet of spines lateral to insertion of mandible, ventral (G); k, first maxilla, ventral (J).

Fig. 12. Chauliolobion tectuliferum n. sp., female, a, second maxilla, anterior (F) ; b, maxilliped, antero-inner (F) ; c, area between maxillipeds and first pair of legs, ventral (E) ; d, leg I and intercoxal plate, anterior (C) ; e, leg 2,
anterior (C); f, leg 3 and intercoxal plate, anterior (C); g , leg 4 and intercoxal plate, anterior (C); h, leg 5, ventral and slightly lateral (F).

Fig. 13. Chauliolobion tectuliferum n. sp., male. a, urosome, ventral (D) ; b, maxilliped, postero-inner (G); c, endopod of leg 1 , anterior (G) ; d, endopod of leg 2 , an-
segments from anterior to posterior 70×102, $86 \times 9 \mathrm{r}, 8 \mathrm{r} \times 86$, and $42 \times 8 \mathrm{r} \mu \mathrm{m}$. First postgenital segment with posteroventral row of spines.

Caudal ramus like that of female, $52 \times 30 \mu \mathrm{~m}$.
Body surface ornamented with very few hairs (sensilla) as in female.
Rostral area, mandible, paragnath, first maxilla, and second maxilla as in female. Maxilliped (fig. 13b) 4 -segmented (assuming that proximal part of claw represents fourth segment). First segment unarmed. Second segment with two setae and row of spinules. Small third segment unarmed. Claw $\mathrm{I} 38 \mu \mathrm{~m}$ long, slightly swollen proximally where it bears two very unequal setae.

Ventral area between maxillipeds and first pair of legs as in female.

Legs 1-4 resembling those of female except for endopods having two segments instead of three
terior (G) ; e, endopod of leg 3, anterior (G) ; f, endopod of $\operatorname{leg} 4$, anterior (G).
(figs. 13c, 13d, I3e, 13 f). Endopod of leg 2 (fig. 13d) particularly dimorphic, with long slender spiniform process medial to insertion of terminal spine which has several long spinules.

Leg 5 (fig. I3a) resembling that of female.
Leg 6 (fig. I3a) a posteroventral flap on genital segment bearing two unequal smooth setae $17 \mu \mathrm{~m}$ and $19 \mu \mathrm{~m}$.

Fully formed spermatophore not seen.
Color as in female.
Etymology. - The specific name tectuliferum, from Latin tectulum meaning a little roof and fero meaning to bear, alludes to the rooflike plate over the dorsal seta on the caudal ramus.
Comparison with other species of Chauliolobion. Chauliolobion tectuliferum may be distinguished from its four previously described congeners by the presence of a rooflike plate over the dorsal seta
on the caudal ramus. The two distal spines on the third exopod segment of leg a are recurved and oppose each other as in Chauliolobion forcipatum. C. tectuliferum may be easily distinguished from C. forcipatum, however, by the difference in shape of the female genital segment.

Chauliolobion foliaceum (Ummerkutty, 1970)

Host: Holothuria (Halodeima) atra (Jaeger). Site: Body cavity.
Locality: Gulf of Mannar, southeastern India (Ummerkutty, 1970).
Notes: Length of 90.79 mm , $\delta 0.75 \mathrm{~mm}$. Smaller in size than other species in genus. Second segment of first antenna with a digitiform spine on anterolateral corner. (This species, originally described as Sabelliphilus foliacea Ummerkutty, 1970, needs redescription).

Key to the species of Chauliolobion

I. Third segment of endopod of leg 4 with II, I or II, I

2
Third segment of endopod of leg 4 with I, 2
4
2. Third segment of endopod of leg 4 with II, i, the seta very small \qquad C. forcipatum Third segment of endopod of leg 4 with II, I
3. Two distal spines on third segment of exopod of leg a strongly recurved and opposing each other; dorsal seta on caudal ramus covered dorsally by a rooflike flange C. tectuliferum Two distal spines on third segment of exopod of leg a not strongly recurved; without rooflike flange over dorsal seta on caudal ramus \qquad
\qquad
4. Outer process on coxa of legs I and 2 distinctly longer than first segment of exopod \qquad Outer process on coxa of leg I longer than entire exopod, that on coxa of leg 2 shorter than first segment of exopod C. imparile
5. Length of 9 r.or mm ($0.9 \mathrm{I}-\mathrm{I} .13 \mathrm{~mm}$), $\delta 0.92$ mm ($0.86-0.98 \mathrm{~mm}$); second segment of first antenna bearing setae only C. halodeimatis Length of $q 0.79 \mathrm{~mm}$, $\delta 0.75 \mathrm{~mm}$; second segment of first antenna bearing a digitiform spine on anterolateral corner C. foliaceum

Diogenella Stock, 1968

Body elongate, modified. Caudal ramus with two median terminal setae vestigial and lateral seta displaced proximally. First antenna 7 -segmented. Second antenna 4 -segmented, with one claw on fourth segment. Legs I -4 with 3 -segmented rami. Leg 4 endopod with o-r; o-r; II.

Diogenella deichmannae Humes \& Ho, 1970
Host: Holothuria (Thymioscyia) arenicola (Semper).
Site: Internal.
Locality: Barbados (Humes \& Ho, 1970).
Notes: Length of ${ }^{+}$I. 24 mm , $\begin{gathered}\text { t } 1.05 \mathrm{~mm} \text {. Caudal }\end{gathered}$ ramus with inner terminal seta having only a few minute barbules and outer terminal seta naked. First segment of second antenna lacking spinules. Genital segment of 9 tapered posteriorly. Genital areas anterior to middle of segment.

Diogenella impar Humes \& Ho, 1970

Host: Holothuria (Thymioscyia) arenicola (Semper).
Site: Internal.
Locality: Barbados (Humes \& Ho, 1970).
Notes: Length of ô 1.43 mm . $\xlongequal{\circ}$ unknown. Caudal ramus with all terminal setae naked. Rostrum broad and triangular. First segment of second antenna without spinules. Ratio of greatest length to width of caudal ramus about 3.6: I. Outer spines on third segment of exopod of legs 2-4 unequal.

Diogenella seticauda Stock, 1968

Host: Holothuria (Semperothuria) surinamensis (Ludwig).
Site: Internal.
Locality: Puerto Rico (Stock, 1968; Humes \& Ho, 1970).

Host: Holothuria (Thymioscyia) impatiens (Forskål).
Site: Internal.
Locality: Puerto Rico (Stock, 1968).
Hosts: Holothuria (Thymioscyia) arenicola (Semper) and Holothuria (Semperothuria) surinamensis (Ludwig) (mixed at time of collection).

Site: Internal.

Locality: Puerto Rico (Humes \& Ho, 1970).

Notes: Length of 9 I. $04 \mathrm{~mm}, \widehat{\delta} 0.68 \mathrm{~mm}$. Caudal ramus with ciliated inner and outer terminal setae. First segment of second antenna with spinules. Genital segment of 9 of approximately same width throughout, with genital areas near middle of segment. Genital and first two postgenital segments with transverse posteroventral rows of spines.

Diogenella spinicauda Stock, I968
Host: Holothuria (Halodeima) mexicana Ludwig. Site: Internal.
Localities: Curaçao (Stock, 1968); Bahamas, Puerto Rico, Jamaica (Humes \& Ho, I970).

Host: Actinopyga agassizii (Selenka)

Site: Internal.
Localities: Bahamas, Jamaica (Humes \& Ho, 1970).

Notes: Length of 9 i. 62 mm , ô 1.59 mm . Caudal ramus with ciliated inner and outer terminal setae. First segment of second antenna with spinules. Genital segment of q broadest anteriorly and slightly tapered posteriorly, with genital areas in anterior part of segment. Genital and first two postgenital segments lacking transverse posteroventral rows of spines.

Diogenidium Edwards, 1891

Body cyclopiform, but elongate and somewhat modified. Caudal ramus with two median terminal setae normally developed. First antenna 7 -segmented. Second antenna 4 -segmented, with one claw on fourth segment. Legs I-4 with 3 -segmented rami. Endopod of leg 4 with $\mathrm{O}-\mathrm{I}$; O-I; II.

Diogenidium deforme Stock, 1968
Host: Holothuria (Selenkothuria) glaberrima Selenka.
Site: Internal, ejected from host.
Locality: Puerto Rico (Stock, 1968).
Host: Holothuria (Thymioscyia) arenicola (Semper).
Site: Internal.
Locality: Barbados (Humes \& Ho, 1971).
Host: Holothuria (Halodeima) mexicana (Ludwig).
Site: Internal.

Locality: Puerto Rico, Bahamas (Humes \& Ho, 1971).
 \& Ho, 197I), ㅇ 2.27 mm , ô 1.75 mm (Stock, 1968). Rostrum with pointed beak. Second segment of second antenna lacking fine ornamentation. Second segment of maxilliped of δ with one of two setae arising from bifid base distal to which spinose area does not extend.

Diogenidium nasutum Edwards, 1891
Host: Actinopyga agassizii (Selenka).
Site: Body cavity.
Locality: Bahamas (Edwards, i89ı; Humes \& Ho, 1971).

Host: Holothuria (Halodeima) mexicana (Ludwig).
Site: Body cavity.
Localities: Puerto Rico, Curaçao (Stock, i968); Puerto Rico, Jamaica (Humes \& Ho, 197I).

Host: Holothuria (Halodeima) grisea (Selenka). Site: Body cavity.
Locality: Jamaica (Humes \& Ho, I97I).
Notes: Length of 91.58 mm , $\widehat{\text { i }} \mathrm{I} .49 \mathrm{~mm}$. Rostrum with a pointed beak. Second segment of second antenna with outer spinules. Longest terminal seta on caudal ramus shorter than ramus.

Diogenidium spinulosum Stock, 1968
Host: Isostichopus badionotus (Selenka).
Site: Internal, ejected from host.
Localities: Puerto Rico (Stock, 1968; Humes \& Ho, 197I) ; Jamaica (Humes \& Ho, 1971).
Notes: Length of $i+1.94 \mathrm{~mm}$, δ I .63 mm . Rostrum with broadly rounded posteroventral margin. Second and third segments of rami of legs 1-4 with small spines on posterior surface.

Diogenidium tectum Humes \& Ho, 1971
Host: Actinopyga agassizii (Selenka).
Site: Internal.
Localities: Jamaica, Bahamas (Humes \& Ho, 1971).

Notes: Length of δ r.4I mm. ㅇ unknown. Rostrum with a pointed beak. Second segment of second antenna with small inner spines. Longest ter-
minal seta on caudal ramus about twice length of ramus. Spinose area on second segment of maxilliped extending distally to bifid prominence bearing seta.

Lecanurius Kossmann, 1877

Body modified, elongate, cephalosome broad and triangular. First antenna 7 -segmented. Second antenna 4 -segmented, with one large claw on third segment. Legs I-4 with 3 -segmented rami. Endopod of leg 4 with armature o-r; o-I; I, I, I, I, I or o-i; o-i; I, I, I, i.

Lecanurius intestinalis Kossmann, 1877

Host: Actinopyga lecanora (Jaeger).
Site: In the intestine.
Locality: Bohol Island, Philippine Islands (Kossmann, 1877).
Notes: Length of $\delta \mathbf{1} .46 \mathrm{~mm}$. 9 unknown. Cephalosome semicircular in outline, not indented laterally. Claw of maxilliped with two blunt protuberances. Free segment of leg $2130 \mu \mathrm{~m}$ long.

Lecanurius kossmannianus Humes, 1968
Hosts: Actinopyga lecanora (Jaeger) and Actinopyga miliaris (Quoy \& Gaimard).
Site: Exact location unknown, but presumably internal.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes, 1968).
Notes: Length of $\$ 2.64 \mathrm{~mm}$, δ r .97 mm . Cephalosome somewhat triangular, indented laterally. Claw of δ maxilliped with one pointed prominence. Free segment of leg 5 in ${ }^{\hat{o}} \mathbf{4 2 \mu \mathrm { m } \text { long. }}$

L.ecanurius planifrontalis n. sp .

Figs. I4a-g, I5a-j, r6a-f, i7a-f
Type material. - r 9 , 2 ô ô from 13 holothurians, Actinopyga echinites (Jaeger), in 2 m , Pte. Pontillion (Rocher à la Voile), Nouméa, New Caledonia, 2 June i97I. Holotype ô, allotype 9 (dissected), and one paratypic os (dissected) deposited in the Zoölogisch Museum, Amsterdam.
Female. - Body (fig. r4a) elongate, flattened dorsoventrally. Length 2.34 mm and greatest width 0.98 mm . Cephalosome broad with flattened frontal margin and with posterolateral corners turned slightly ventrally (fig. 14b). Segment of leg I
weakly separated from head. Epimera of segments of legs $2-4$ rounded. Ratio of length to width of prosome 0.98: r. Ratio of length of prosome to that of urosome 0.83 : r.

Segment of leg 5 (fig. 14c) $187 \times 308 \mu \mathrm{~m}$. Genital segment in dorsal view $35^{2} \times 363 \mu \mathrm{~m}$ in greatest dimensions, broad in anterior half but abruptly narrowed in posterior half. Genital areas situated dorsally on posterolateral corners of segment. Each area (fig. I4d) with two naked setae about $39 \mu \mathrm{~m}$ long. Three postgenital segments from anterior to posterior $209 \times 164,176 \times 155$, and $176 \times 180 \mu \mathrm{~m}$. Each segment with a pair of small lateral setules and anal segment with row of minute spinules near its posteroventral margin on each side.

Caudal ramus (fig. 14e) elongate, $260 \times 75 \mu \mathrm{~m}$ (width taken at middle), ratio 3.47: . Outer lateral seta $44 \mu \mathrm{~m}$, dorsal seta $40 \mu \mathrm{~m}$, outermost terminal seta $60 \mu \mathrm{~m}$, innermost terminal seta $78 \mu \mathrm{~m}$, and two long median terminal setae $200 \mu \mathrm{~m}$ (outer) and $308 \mu \mathrm{~m}$ (inner). All setae smooth. Subterminally on ventral surface of ramus two rows of minute spinules.

Body surface with few small hairs (sensilla) as in figures 14 a and 14 c .

Egg sacs (fig. r4a) elongate, $\mathrm{I} .38 \times 0.19 \mathrm{~mm}$ and $\mathrm{I} .30 \times 0.19 \mathrm{~mm}$, each containing approximately 3^{2} eggs varying in shape from subspherical, $112 \times 107 \mu \mathrm{~m}$, to elongate, $133 \times 86 \mu \mathrm{~m}$.

Rostral area (fig. r4f) weakly defined.
First antenna (fig. I4g) $446 \mu \mathrm{~m}$ long. Lengths of seven segments (measured along their posterior nonsetiferous margins): 52 ($9 \mathrm{I} \mu \mathrm{m}$ along anterior margin), $146,36,70,42,35$, and $26 \mu \mathrm{~m}$ respectively. Formula for armature: 4, 13, 6, 3, $4+\mathrm{I}$ aesthete, $2+\mathrm{I}$ aesthete, and $7+\mathrm{I}$ aesthete. All setae naked.

Second antenna (fig. I5a) 4 -segmented, $470 \mu \mathrm{~m}$ long including claw. Armature: $\mathrm{I}, \mathrm{I}, 3+$ claw, and 7. Claw $109 \mu \mathrm{~m}$ along its axis. Fourth segment small, $42 \times 26 \mu \mathrm{~m}$. All setae naked.

Labrum (fig. 15b), mandible (fig. 15c), paragnath (fig. I5b), first maxilla (fig. 15d), second maxilla (fig. ${ }_{5} \mathrm{e}$), and maxilliped (fig. I_{5} f) resembling in general features those of Lecanurius kossmannianus Humes, 1968. Setae on second maxilla smooth.

Fig. 14. Lecanurius planifrontalis n. sp., female. a, dorsal (A) ; b, contour of cephalosome, ventral (I) ; c, urosome, ventral (B) ; d, leg 6, ventral (C) ; e, caudal ramus, dorsal
(B) ; f, rostral area, ventral (B) ; g, first antenna, ventral (E).

Fig. 15. Lecanurius planifrontalis n. sp., female. a, second antenna, anterior (E); b, labrum with position of paragnaths indicated by broken lines, ventral (C) ; c, mandible, posterior (G) ; d, first maxilla, posterior (G) ; e, second
maxilla, posterior (C) ; f, maxilliped, anterior (C) ; g, area between maxillineds and first pair of legs, ventral (D); h, leg I and intercoxal plate, anterior (D); i, leg 2, anterior (D) ; j, endopod of leg 3 , anterior (D).

Fig. 16. Lecanurius planifrontalis n. s p.,female: a, leg 4 male: c, dorsal (I); d, urosome, dorsal (B); e, maxilliand intercoxal plate, anterior (D) ; b, leg 5, dorsal (C). ped, antero-inner (C); f, maxilliped, posterior (C).

Fig. 17. Lecanurius planifrontalis n. sp., male. a, claw of maxilliped, flat view (C); b, endopod of leg I , anterior (E) ; c, endopod of leg 2, anterior (E) ; d, left endopod of
leg 4, with extra seta on third segment, anterior (E); e, $\operatorname{leg} 5$, ventral (C); f, leg 6, ventral (E).

Leg 6 represented by two setae on genital area (fig. 14d).
Color in life in transmitted light opaque grayish white, eye red, egg sacs pale gray.
Male. - Body (fig. 16c) resembling in general form that of female. Length 1.7 Imm ($\mathrm{I} .67-1.75$ mm) and greatest width $0.74 \mathrm{~mm}(0.67-0.80 \mathrm{~mm})$, based on two specimens in lactic acid. Ratio of length to width of prosome $1.08: \mathrm{I}$. Ratio of length of prosome to that of urosome 0.90: i.

Segment of leg 5 (fig. 16d) $73 \times 174 \mu \mathrm{~m}$. Genital segment $252 \times 234 \mu \mathrm{~m}$, only slightly longer than wide. Four postgenital segments from anterior to posterior $99 \times 104,123 \times 107,112 \times 102$, and $120 \times 110 \mu \mathrm{~m}$.

Caudal ramus similar to that of female, but smaller, $150 \times 48 \mu \mathrm{~m}$, ratio 3.13 : I .

Body surface ornamented with hairs or setules as in female.

Rostral area, first antenna, second antenna, labrum, mandible, paragnath, first maxilla, and second maxilla as in female. Maxilliped (figs. 16e, ı6f) 4 -segmented, interpreting proximal part of claw as representing fourth segment. First segment unarmed. Second segment with two small setae, three stout striated spines, two of them with truncate tips, and two groups of minute spines. Third segment small and unarmed. Claw (fig. i7a) 252 $\mu \mathrm{m}$ along its axis, with a proximally directed spiniform process on its concave margin, and bearing proximally two unequal smooth setae.

Legs i-4 segmented and armed as in female except for endopods of legs I and 2 which are 2 segmented. Endopod of leg I (fig. 17b) with formula o-i; I, 5, I. Endopod of leg 2 (fig. 17c) with o-I; I, II, 3, 2. Leg 4 endopod with o-I; o-I; I, I, I, I in holotype and in endopod of right leg 4 in dissected male, but in endopod of left leg 4 (fig. ${ }^{17}$ d) of this dissected male formula is o-I; o-I; I, I, I, I, I, this being interpreted as an abnormal condition.

Leg 5 (fig. 17e) with free segment shorter than in female, $34 \times 23 \mu \mathrm{~m}$, ratio 1.48: I . Two terminal setae $65 \mu \mathrm{~m}$ and $83 \mu \mathrm{~m}$. Dorsal seta $39 \mu \mathrm{~m}$.

Leg 6 (fig. iff) a posteroventral flap on genital segment bearing two slender smooth setae $39 \mu \mathrm{~m}$ and $55 \mu \mathrm{~m}$. Near insertion of longer seta a row of minute spinules.

Spermatophore not seen.
Color similar to that of female.
Etymology. - The specific name planifrontalis, a combination of Latin planus meaning flat, frons meaning forehead, and the suffix -alis signifying having the quality of, alludes to the flattened anterior margin of the head.
Comparison with other species. - The flattened anterior margin of the head in Lecanurius planifrontalis sets the species apart from the other two members of the genus, Lecanurius intestinalis Kossmann, 1877, and Lecanurius kossmannianus Humes, 1968. The new species differs from L. intestinalis (of which only the male is known) in body length of the male (1.97 mm instead of 1.46 mm as in L. intestinalis), in the cephalosome being laterally indented instead of rounded, in having one pointed prominence instead of two blunt protuberances on the claw of the maxilliped, and in the
length of the free segment of leg 5 ($34 \mu \mathrm{~m}$ instead of $\mathrm{r} 30 \mu \mathrm{~m}$ as in L. intestinalis).
L. planifrontalis differs from L. kossmannianus in having the formula I, I, I, I on the third segment of the endopod of leg 4 , instead of I, I, I, I, I. The female of the new species further differs from L. kossmannianus in body length (2.34 mm instead of 2.64 mm) and in the dimensions and shape of the genital segment ($35^{2} \times 363 \mu \mathrm{~m}$ instead of $540 \times 396 \mu \mathrm{~m})$.

Host: Actinopyga miliaris (Quoy \& Gaimard). Site: Hind gut.
Locality: Northeastern Australia (present paper). New host record: i 9,6 ô $\hat{\delta}$ from Actinopyga miliaris, Arlington Reef complex, off Queensland, Australia, in May 1977, L. Cannon collector.

Lecanurius sp.

Host: Synapta maculata (Chamisso \& Eysenhardt).
Site: Exact location unknown, but presumably internal.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes, 1968).
Notes: Only a single copepodid known. Some features suggest Lecanurius.

Lichothuria Stock, 1968

Body modified, elongate, and slender. First antenna 7 -segmented. Second antenna 4 -segmented, with one claw on third segment. Mandible with large spinelike element on convex side near origin of bipectinate blade. Legs $\mathrm{I}-4$ in 9 with 3 -segmented rami, with leg 4 endopod o-r; O-I; II, r ; in δ with 3 -segmented exopods and 2 -segmented endopods, with leg 4 endopod o-r; II, I, r.

Lichothuria mandibularis Stock, 1968
Host: Holothuria (Halodeima) atra (Jaeger).
Site: Internal, ejected from host.
Localities: Eilat, Gulf of Aqaba, Israel (Stock, 1971) ; region of Nosy Bé, northwestern Madagascar (Humes \& Ho, 1969).

Host: Holothuria (Metriatyla) scabra Jaeger.
Site: Internal.

Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Ho, 1969).

Host: Holothuria (Microthele) nobilis (Selenka). Site: Internal.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Ho, 1969).

Host: Holothuria (Cystipus) fuscopunctata Jaeger. Site: Internal.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Ho, 1969).
Notes: Length of $\xlongequal[+]{ } 1.6 \mathrm{Imm}, \delta \frac{1}{\mathrm{I}} .32 \mathrm{~mm}$.

Scambicornus Heegaard, 1944

Body cyclopiform. First antenna 7 -segmented. Second antenna 4 -segmented, with claw on third segment. Legs I-4 in 9 with 3 -segmented rami. Leg 4 endopod with o-r; o-I; I, II, II. In ô legs I and 2 with 3 -segmented exopods and 2 -segmented endopods; legs 3 and 4 with both rami 3 -segmented.
(Preherrmannella Sewell, 1949, is a junior synonym of Scambicornus).

Scambicornus batiolatus n. sp.

Figs. I8a-k, 19a-k, 20a-j
Type material. - 152 우, 71 ô ${ }^{\text {or }}$ from one holothurian. Holothuria (Halodeima) atra (Jaeger), in io m, southern shore of Goenoeng Api, Banda Islands, $4^{\circ} 32^{\circ} \mathrm{O} 5^{\prime \prime} \mathrm{S}, 129^{\circ} 52^{\prime} 30^{\prime \prime} \mathrm{E}, 26$ April 1975. Holotype $\xlongequal{\circ}$, allotype, and 215 paratypes (148% 67 ô ${ }^{\text {of }}$) deposited in the Zoölogisch Museum, Amsterdam; the remaining paratypes (dissected) in the collection of the author.
Other specimens. - From Holothuria atra: 6 ㅇ, I ô from 2 hosts, in 3 m , Poelau Gomumu, south of Obi, $\mathrm{I}^{\circ}{ }_{5} 0^{\prime} 00^{\prime \prime} \mathrm{S}, 127^{\circ} 30^{\prime} 54^{\prime \prime} \mathrm{E}$, 30 May 1975 ; 20 아, 18 ô ô from 4 hosts, in 5 m , southwestern shore of Goenoeng Api, Banda Islands, $4^{\circ} 31^{\prime} 45^{\prime \prime} \mathrm{S}$, $129^{\circ} 51^{\prime} 55^{\prime \prime} \mathrm{E}, 2$ May 1975; r 9 , I O^{2} from I host, in 4 m , Poelau Marsegoe, western Ceram, $2^{\circ} 59^{\prime} 30^{\prime \prime}$ S , $128^{\circ} 03^{\prime} 30^{\prime \prime} \mathrm{E}$, i5 May 1975; I ㅇ, i ô from I host, in 3 m , Poelau Gomumu, south of Obi, $\mathrm{I}^{\circ} 5^{\prime}$ $00^{\prime \prime} \mathrm{S}, 127^{\circ} 3^{\prime} 0^{\prime} 54^{\prime \prime} \mathrm{E}, 30$ May 1975; 7 \$9, 5 ô ô from I host, in 18 m , south of Poelau Naira (Bandanaira), Banda Islands, $4^{\circ} 32^{\prime} 12^{\prime \prime} \mathrm{S}, 129^{\circ} 53^{\prime} 40^{\prime \prime} \mathrm{E}$, 2 May 1975; 3 여, 3 ठ ${ }^{\circ}$ ot from I host, in 1.5 m , southwestern shore of Goenoeng Api, Banda Is-
lands, $4^{\circ} 3$ r $^{\prime} 45^{\prime \prime} \mathrm{S}, 129^{\circ} 5 \mathrm{I}^{\prime} 55^{\prime \prime} \mathrm{E}, 2$ May 1975; 2 ó ó from 4 hosts, in 4 m , Poelau Marsegoe, western Ceram, $2^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}, 128^{\circ}{ }^{\circ} 3^{\prime} 30^{\prime \prime} \mathrm{E}$, 15 May 1975. From Thelenota ananas (Jaeger): 3 우, 3 ō δ from I host, in 4 m , Poelau Marsegoe, western Ceram, $2^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}, 128^{\circ} \mathrm{O} 3^{\prime} 30^{\prime \prime} \mathrm{E}$, I 5 May 1975.
Female. - Body (fig. I8a) with moderately broad prosome. Length (not including setae on caudal rami) $0.98 \mathrm{~mm}(0.85-1.05 \mathrm{~mm})$ and greatest width 0.44 mm ($0.4 \mathrm{I}-0.47$), based on 10 specimens in lactic acid. Segment of leg I separated from head by dorsal transverse furrow. Epimeral areas of segments of legs i-4 rounded. Ratio of length to width of prosome I .36: r. Ratio of length of prosome to that of urosome 1.76: I.

Segment bearing leg 5 (fig. 18 b) $88 \times 104 \mu \mathrm{~m}$. Genital segment $94 \times 109 \mu \mathrm{~m}$, slightly wider than long, its lateral margins rounded. Posteroventral margin of segment with dentate fringe. Genital areas located dorsolaterally at middle of segment. Each area (fig. 18c) with two small naked setae about $9 \mu \mathrm{~m}$ long and a minute spiniform process. Three postgenital segments from anterior to posterior $36 \times 60,29 \times 57$, and $55 \times 58 \mu \mathrm{~m}$. First postgenital segment with posteroventral dentate fringe. Anal segment with row of minute posteroventral spinules on each side.

Caudal ramus (fig. 18d) elongate, $83 \times 22 \mu \mathrm{~m}$, ratio 3.77 : . Outer lateral seta (situated dorsally) $82 \mu \mathrm{~m}$, dorsal seta $94 \mu \mathrm{~m}$, outermost terminal seta $77 \mu \mathrm{~m}$, innermost terminal seta $79 \mu \mathrm{~m}$, and two long median terminal setae $308 \mu \mathrm{~m}$ (outer) and 506 $\mu \mathrm{m}$ (inner). All setae naked. Terminal ventral flange with row of extremely small spinules.

Body surface with few small hairs (sensilla) and refractile points as in figures $18 e$ and 18 b .

Egg sac (fig. 18e) elongate, $550 \times 187 \mu \mathrm{~m}$, with many eggs, each with average diameter $50 \mu \mathrm{~m}$ (42$55 \mu \mathrm{~m}$).

Rostrum (fig. i8f) weakly developed.
First antenna (fig. 18 g) $355 \mu \mathrm{~m}$ long. Lengths of seven segments (measured along their posterior nonsetiferous margins): 26 ($55 \mu \mathrm{~m}$ along anterior margin), $122,23,65,35,31$, and $24 \mu \mathrm{~m}$ respectively. Formula for armature: 4, 13, 6, 3, $4+1$ aesthete, $2+\mathrm{I}$ aesthete, and $7+\mathrm{I}$ aesthete. Setae generally smooth but two setae on second segment in some specimens with few small spinules.

Fig. 18. Scambicornus batiolatus n. sp., female. a, dorsal (I) ; b, urosome, dorsal (D) ; c, genital area, dorsal (F) ; d, caudal ramus, dorsal (C); e, egg sac, dorsal (B) ; f, rostrum, ventral (D) ; g, first antenna, ventral (E); h,
second antenna, anterior (C); i, labrum with position of paragnaths indicated by broken lines, ventral (C) ; j, mandible, posterior (G); k, first maxilla, posterior (G).

and intercoxal plate, anterior (E); f, leg 2, anterior (E); g , third segment of endopod of leg 3, anterior (E) ; h, leg 4 and intercoxal plate, anterior (E); i, leg 5, dorsal (C). Male : \mathbf{j}, dorsal (I) ; k, urosome, dorsal (E).

Fig. 20. Scambicornus batiolatus n. sp., male. a, third segment of first antenna, dorsal (C) ; b, second antenna, posterior (C) ; c, second segment of second antenna, ventral (anterior) (G); d, maxilliped, posterior (C); e, claw of
maxilliped, anterior (C); f, proximal seta on claw of maxilliped, posterior (F) ; g, endopod of leg I , anterior (C) ; h, endopod of leg 2, anterior (C) ; i, leg 5, dorsal (C) ; j, leg 6, ventral (C).

Second antenna (fig. 18h) 4 -segmented, $250 \mu \mathrm{~m}$ long including claw. Armature: 1, I, $3+$ claw, and 7. All setae naked. Small fourth segment much shorter than claw which is $60 \mu \mathrm{~m}$ along its axis.

Labrum (fig. 18i), mandible fig. 18 j), paragnath (fig. 18i), and first maxilla (fig. 18 k) resembling those of Scambicornus tylotus Humes, 1975. Second maxilla (fig. 19a) also similar to that of S. $t y-$ lotus but spinules on inner seta on second segment
stronger and teeth on lash more evenly graduated (fig. 19b) than in that species. Maxilliped (fig. 19c) resembling that of S. tylotus but lacking patch of small spines on second segment.

Ventral area between maxillipeds and first pair of legs (fig. igd) slightly protuberant.

Legs 1-4 (figs. 19e, igf, 19g, igh) with segmentation and spine and setal formula as in S. tylotus. Leg 4 with inner coxal seta $19 \mu \mathrm{~m}$ and naked. En-
dopod $112 \mu \mathrm{~m}$ long, with first and second segments having spinelike inner element. Five spines on third segment from outer to inner $30,35,71,27$, and 22 $\mu \mathrm{m}$.

Leg 5 (fig. 19i) with small unornamented free segment $39 \times 21 \mu \mathrm{~m}$, ratio $\mathrm{I} .86: \mathrm{I}$, its posterior surface slightly irregular. Outer terminal seta 5^{2} $\mu \mathrm{m}$ and smooth, inner terminal seta $100 \mu \mathrm{~m}$ with outer spinules. Dorsal seta on body near insertion of free segment $40 \mu \mathrm{~m}$ and smooth.

Leg 6 represented by two setae on genital area (fig. I 8 c).

Color in life in transmitted light pale lavender brown, eye red, egg sacs gray.
Male. - Body (fig. i9j) resembling in general form that of female. Length (excluding setae on caudal rami) $0.80 \mathrm{~mm}(0.73-0.87 \mathrm{~mm})$ and greatest width 0.37 mm ($0.34-0.39 \mathrm{~mm}$), based on to specimens in lactic acid. Ratio of length to width of prosome I.39: I. Ratio of length of prosome to that of urosome I.72: I.

Segment bearing leg 5 (fig. 19 k) $39 \times 86 \mu \mathrm{~m}$. Genital segment $125 \times 122 \mu \mathrm{~m}$, about as long as wide, in dorsal view its outline slightly bell-shaped. Four postgenital segments from anterior to posterior $31 \times 57,34 \times 55,29 \times 52$, and $39 \times 52 \mu \mathrm{~m}$. First and second postgenital segments with posteroventral dentate fringe.
Caudal ramus (fig. 19k) $49 \times 23 \mu \mathrm{~m}$, ratio 2.13: I, shorter than in female.

Body surface ornamented with hairs and refractile points as in female.

Rostrum as in female. First antenna with segmentation, setal formula, and aesthetes as in female, but seta on posterior distal corner of third segment stouter (fig. 20a) than in female. This seta and many others with minute surficial spinules.
Second antenna (fig. 20b) with two groups of stalked suckers about $6 \mu \mathrm{~m}$ in diameter (nine in each group) on second segment (fig. 20c) and few minute spines on third segment. Otherwise second antenna resembling that of female.

Labrum, mandible, paragnath, first maxilla, and second maxilla like those of female. Maxilliped (fig. 2od) 4 -segmented, assuming that proximal part of claw represents fourth segment. First segment unarmed. Second segment with two slender
naked setae surrounded by patch of large spines, and in addition a longitudinal row of small spines. Third segment small and unornamented. Claw sharply recurved distally and $\mathrm{I} 35 \mu \mathrm{~m}$ along its axis, with prominent knob on concave margin just proximal to flexure (fig. 20e), and bearing proximally two unequal setae, one seta slender, other seta with stout base and more slender striated distal portion (fig. 2of).
Ventral area between maxillipeds and first pair of legs like that of female.

Legs $\mathrm{I}-4$ similar to those of female except for endopods of legs I and 2 . Endopod of leg I (fig. 20g) 2 -segmented and slender, relatively longer ($121 \mu \mathrm{~m}$) than exopod ($9 \mathrm{I} \mu \mathrm{m}$). Formula: o-r; II, 4, 1. Endopod of leg 2 (fig. 2oh) 2 -segmented, slightly longer ($\mathrm{II} 4 \mu \mathrm{~m}$) than exopod ($\mathrm{IO} 2 \mu \mathrm{~m}$). Formula: o-I; I, II, 3, 2. Two long recurved spiniform processes on inner margin of distal part of second segment.

Leg 5 (fig. 20i) with small unornamented free segment $3 \mathrm{I} \times{ }^{11} \mu \mathrm{~m}$, ratio 2.82: I. Two terminal setae $44 \mu \mathrm{~m}$ and Io 5 m . Dorsal seta $4 \mathrm{I} \mu \mathrm{m}$.

Leg 6 (fig. 20j) a posteroventral flap on genital segment bearing two plumose setae about $34 \mu \mathrm{~m}$ long and a spiniform process.

Color as in female.
Etymology. - The specific name batiolatus, derived from Latin batiola meaning a cup and the suffix -atus signifying provided with, refers to the cuplike suckers on the second antenna of the male. Comparison with related species. - Scambicornus batiolatus differs from all but one species in the genus in having suckers on the second antenna of the male. Only in Scambicornus poculiferus (Humes \& Cressey, 196I) is this appendage provided with suckers. The number of suckers (four) in that species is much smaller, however, than in the new species (eighteen). S. batiolatus may be further distinguished from S. poculiferus by the structure of the claw of the male maxilliped, sharply recurved with a prominent knob on the concave margin in the new species, but gently recurved with a smooth concave margin in S. poculiferus.

Scambicornus brachysetosus Reddiah, 1968
Host: Holothuria (Halodeima) atra Jaeger.
Site: Unknown, probably body surface.

Locality: Madras State, South India (Reddiah, 1968).

New record: 3798 from the esophagus of Holo-
thuria atra, Heron Island, eastern Australia, 9 April 1974. Collected by L. Cannon.
Notes: Length of $\subset 0.63 \mathrm{~mm}$, $\delta 0.43 \mathrm{~mm}$ (Humes, 1975). Genital segment of q wider than long, with sides evenly rounded. Caudal ramus of O with ratio 2.I: I. Second antenna with fourth segment short, reaching to articulation of claw. Claw of δ maxilliped denticulate on convex side and having a proximally directed spiniform process near midregion.

Scambicornus calcaratus Humes, 1975
Host: Actinopyga miliaris (Quoy \& Gaimard).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).

Host: Actinopyga palauensis Panning.
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).

Host: Actinopyga plebeja (Selenka).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).

Host: Actinopyga serratidens Pearson.
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).

Host: Actinopyga echinites (Jaeger).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).

Host: Actinopyga lecanora (Jaeger).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).
Notes: Length of O I. 30 mm , के I. 13 mm . Female genital segment only slightly wider than long, without lateral wings. Caudal ramus of $+\frac{+}{}$ with ratio 2.97: I, ठ̂ 2.14: I. Fourth segment of second antenna short, not reaching to articulation of claw. Third
segment of exopod of leg I with unusually long distalmost lateral spine, as long as entire exopod in 9 . Second segment of δ maxilliped with large postero-inner patch of spines and many small bosses along its outer surface.

Scambicornus campanulipes (Humes \& Cressey, 1961)

Preherrmannella campanulipes Humes \& Cressey, 1961. Host: Actinopyga mauritiana (Quoy \& Gaimard). Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 196r; Humes, 1967).

Host: Actinopyga echinites (Jaeger).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 196r; Humes, 1975); Mauritius (Humes, 1975b).

Host: Actinopyga sp.
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1961).

Host: Holothuria (Halodeima) atra (Jaeger).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1961).

Host: Actinopyga lecanora (Jaeger).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1961; Humes, 1967); region of Nouméa, New Caledonia (Humes, 1975a).

Host: Actinopyga miliaris (Quoy \& Gaimard).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 196i; Humes, 1967).

Host: Actinopyga plebeja (Selenka).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).
Notes: Length of ${ }^{+} \mathrm{r} .2 \mathrm{I} \mathrm{mm}$, $\hat{0} 0.8 \mathrm{r} \mathrm{mm}$. Genital segment of q wider than long, with two small dor-
sal protuberances on anterior half of segment. Leg 5 of $\xlongequal[+]{ }$ campanuliform. Maxilliped of δ with broad obtuse spines on second segment; larger of two setae at base of claw bent angularly.

Scambicornus disparilis n. sp.

Figs. 21a-j, 22a-k, 23a-g
Type material. - 19 앙, 6 o δ from one holothurian, Holothuria (Halodeima) atra (Jaeger), in io m , southern shore of Goenoeng Api, Banda Islands, $4^{\circ} 3^{\prime} 05^{\prime \prime} \mathrm{S}, 129^{\circ} 5^{\prime} 30^{\prime \prime} \mathrm{E}, 26$ April 1975. Holotype $\%$, allotype, and 19 paratypes (15 ㅇㅇ, $4 \delta^{\delta} \delta^{\circ}$) deposited in the Zoölogisch Museum, Amsterdam; the remaining paratypes (dissected) in the collection of the author.
Other specimens (all from Holothuria atra). - 15 웅, 7 ठo के from 2 hosts, in 3 m , Poelau Gomumu, south of Obi, $1^{\circ} 5^{\prime} 00^{\prime \prime} \mathrm{S}, 127^{\circ} 30^{\prime} 54^{\prime \prime} \mathrm{E}$, 30 May 1975; 8 여, 3 ठ δ from 4 hosts, in 5 m , southwestern shore of Goenoeng Api, Banda Islands,
 from I host, in 4 m , Poelau Marsegoe, western Ceram, $2^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}, 128^{\circ} \mathrm{O} 3^{\prime} 30^{\prime \prime} \mathrm{E}$, r 5 May 1975 ; 3 ô ठ̂ from i host, in 3 m , Poelau Gomumu, south of Obi, $\mathrm{I}^{\circ}{ }^{5} 5^{\prime} 00^{\prime \prime} \mathrm{S}, 127^{\circ} 30^{\prime} 54^{\prime \prime} \mathrm{E}$, 30 May 1975; I 9,2 ठ δ from 1 host, in 18 m south of Poelau Naira (Bandanaira), Banda Islands, $4^{\circ} 32^{\prime} 12^{\prime \prime} \mathrm{S}$, 129 ${ }^{\circ} 53^{\circ} 40^{\prime \prime} \mathrm{E}, 2$ May 1975; 2 아, 3 ô ô from I host, in 1.5 m , southwestern shore of Goenoeng Api, Banda Islands, $4^{\circ} 31^{\prime} 45^{\prime \prime} \mathrm{S}, 129^{\circ} 51^{\prime} 55^{\prime \prime} \mathrm{E}, 2$ May 1975; 7 여, 5 ô ${ }^{\text {ot }}$ from 4 hosts, in 4 m , Poelau Marsegoe, western Ceram, $2^{\circ}{ }_{59} 9^{\prime} 3^{\prime \prime} \mathrm{S}$, $128^{\circ}{ }^{\circ} 3^{\prime}$ $30^{\prime \prime} \mathrm{E}$, I 5 May 1975.
Female. - Body (fig. 2ra) with fairly broad prosome. Length (not including setae on caudal ramus) I.II mm ($\mathrm{r} .05-\mathrm{r} . \mathrm{I} 8 \mathrm{~mm}$) and greatest width $0.60 \mathrm{~mm}(0.58-0.63 \mathrm{~mm})$, based on ro specimens in lactic acid. Segment of leg i separated from head by dorsal transverse furrow. Epimeral areas of segments of legs I-4 as in figure. Ratio of length to width of prosome i.2I: i. Ratio of length of prosome to that of urosome r.jo: r.

Segment bearing leg 5 (fig. 2Ib) $78 \times \mathrm{r} 43 \mu \mathrm{~m}$. Genital segment $130 \times 180 \mu \mathrm{~m}$, broadest posteriorly. Genital areas situated at posterolateral corners of segment. Each area (fig. 21c) bearing two slender naked setae about $35 \mu \mathrm{~m}$ long and a minute knoblike process. Three postgenital segments from
anterior to posterior $49 \times 78,52 \times 75$, and $73 \times$ $73 \mu \mathrm{~m}$. Anal segment with row of minute posteroventral spinules on each side.

Caudal ramus (fig. 2Id) moderately elongate, $83 \times 29 \mu \mathrm{~m}$, ratio 2.86 : I. Outer lateral seta (situated dorsally) $220 \mu \mathrm{~m}$, dorsal seta $169 \mu \mathrm{~m}$, outermost terminal seta $210 \mu \mathrm{~m}$, innermost terminal seta I $35 \mu \mathrm{~m}$, and two long median terminal setae 495 $\mu \mathrm{m}$ (outer) and $650 \mu \mathrm{~m}$ (inner). All setae naked except two long haired terminal setae. Terminal ventral flange with minute marginal spinules.

Body surface with few hairs (sensilla) and numerous refractile points as in figure 21a.

Complete egg sacs not seen, but individual eggs ranging in diameter from 49-60 $\mu \mathrm{m}$.

Rostrum (fig. 21e) without clearly defined posteroventral border.

First antenna (fig. 2If) $358 \mu \mathrm{~m}$ long. Lengths of seven segments (measured along their posterior nonsetiferous margins): 40 ($55 \mu \mathrm{~m}$ along anterior margin), $122,31,62,39,26$, and $23 \mu \mathrm{~m}$ respectively. Formula for armature as in Scambicornus batiolatus described above. Setae naked except for certain haired setae on segments 6 and 7 .

Second antenna (fig. 21g) $280 \mu \mathrm{~m}$ long including claw. Armature as in S. batiolatus. Claw $75 \mu \mathrm{~m}$ along its axis. All setae naked.

Labrum (fig. 2Ih), mandible (fig. 2Ii), paragnath (fig. 2rh), and first maxilla (fig. 2ij) not greatly different from those of S. batiolatus. Second maxilla (fig. 22a) resembling that of S. batiolatus but first two teeth on lash distinctly larger than more distal teeth. Maxilliped (fig. 22b) with inner marginal spinules on second segment.

Ventral area between maxillipeds and first pair of legs as in S. batiolatus.

Legs I-4 (figs. 22c, 22d, 22e, 22f) with segmentation and spine and setal formula as in S. batiolatus. Leg 4 with inner coxal seta $17 \mu \mathrm{~m}$ and naked. Endopod $107 \mu \mathrm{~m}$ long. Five spines on third segment from outer to inner $22,36,66,40$, and $39 \mu \mathrm{~m}$.

Leg 5 (fig. 22g) with discoidal, medioventrally concave free segment $39 \times 44 \mu \mathrm{~m}$, ratio $\mathrm{I}: 0.89$, slightly wider than long. Two terminal setae $86 \mu \mathrm{~m}$ (inner) and $68 \mu \mathrm{~m}$ (outer), both barbed. Free segment ornamented with few minute spinules near insertions of setae. Dorsal seta on body near free segment $65 \mu \mathrm{~m}$ and smooth.

Fig. 21. Scambicornus disparilis n. sp., female. a, dorsal (I) ; b, urosome, dorsal (D) ; c, segment of leg 5, genital segment, and first postgenital segment, lateral (E) ; d, caudal ramus, dorsal (C);e, rostral area, ventral (B); f,
first antenna, ventral (E) ; g , second antenna, anterior (C) ; h, labrum with position of paragnaths indicated by broken lines, ventral (C); i, mandible, posterior (G); j, first maxilla, posterior (G).

Fig. 22. Scambicornus disparilis n. sp., female: a, second maxilla, posterior (G) ; b, maxilliped, antero-inner (G); c , leg 1 and intercoxal plate, anterior (E); d, leg 2, anterior (E) ; e, third segment of endopod of leg 3, anterior

Fig. 23. Scambicornus disparilis n. sp., male. a, maxilliped, posterior (C) ; b, endopod of leg I , anterior (C) ; c, endopod of leg 2 , anterior (C); d, endopod of leg 3, anterior

Leg 6 represented by two setae on genital area (fig. 2Ic).

Color in life in transmitted light pale lavender brown, eye red, eggs gray.
Male. - Body (fig. 22h) with prosome less broad than in female. Length (excluding setae on caudal rami) $0.72 \mathrm{~mm}(0.66-0.76 \mathrm{~mm})$ and greatest width 0.32 mm ($0.30-0.33 \mathrm{~mm}$), based on six specimens in lactic acid. Ratio of length to width of prosome 1.38: I. Ratio of length of prosome to that of urosome 1.62 : 1 .

Segment bearing leg 5 (fig. 22i) $39 \times 78 \mu \mathrm{~m}$. Genital segment $99 \times 112 \mu \mathrm{~m}$, with gently rounded margins in dorsal view. Four postgenital segments from anterior to posterior $29 \times 52,29 \times$ $49,25 \times 47$, and $31 \times 50 \mu \mathrm{~m}$.

Caudal ramus (fig. 22j) much shorter than in female, $28 \times 21 \mu \mathrm{~m}$, ratio $1.33:$.

Body surface ornamented with hairs and fewer refractile points than in female.

Rostrum as in female. First antenna with segmentation and setal formula as in female, but many setae with minute surficial spinules as in S. batiolatus.

(C) ; e, leg 5, dorsal (G); f, leg 6, ventral (C) ; g, spermatophore, ventral (C).

Second antenna (fig. 22k) resembling that of female but inner spinules on second and third segments.

Labrum, mandible, paragnath, first maxilla, and second maxilla like those of female. Maxilliped (fig. 23a) segmented as in S. batiolatus. Second segment inwardly with two slender naked setae, a group of long slender spinules, and a patch of refractile punctations. Claw $150 \mu \mathrm{~m}$ along its axis, bearing two very unequal proximal setae, longer seta barbed, shorter seta smooth.

Ventral area between maxillipeds and first pair of legs as in female.

Legs I-4 similar to those of female except for endopods of legs i, 2, and 3. Endopod of leg i (fig. 23b) short, 2 -segmented, $87 \mu \mathrm{~m}$ long, with formula $0-\mathrm{I}$; II, 4, r, outer spine broad and smooth, inner spine slender and minutely barbed. Endopod of leg 2 (fig. 23c) short, 2-segmented, $80 \mu \mathrm{~m}$ long, with formula o-I; I, II, 3, 2 , all three spines narrowly lamellate. Endopod of leg 3 (fig. 23d) $94 \mu \mathrm{~m}$ long, 3 -segmented, with formula $\mathrm{o}-\mathrm{I}$; o-2; I, II, I, 2. Outer terminal spine stout with posteriorly recurved tip, inner terminal spine slender and straight. Leg 4 as in female.

Leg 5 (fig. 23e) with minute free segment $14 \times$ $16 \mu \mathrm{~m}$.

Leg 6 (fig. 23f) a posteroventral flap on genital segment bearing two slender naked setae about 40 $\mu \mathrm{m}$ long and a small spiniform process.

Spermatophore (fig. 23g) globular, $83 \times 57 \mu \mathrm{~m}$ without neck, atached to dorsal surface of genital segment (figs. 2Ib, 2Ic) by cement substance (stippled area).

Color as in female.
Etymology. - The specific name disparilis, Latin meaning different or unequal, alludes to the dissimilar spines on the third endopod segment in leg I in the male.
Comparison with related species. - Scambicornus disparilis differs from all its congeners in the discoidal, medioventrally concave nature of the small free segment of leg 5 in the female. In other species this free segment is subrectangular and its medial surface is flat rather than concave.
S. disparilis may be distinguished readily from Scambicornus batiolatus, described above, by the shape of the female genital segment and the absence of suckers on the second antenna of the male.

Scambicornus hamatus Heegaard, 1944
Host: Neothyonidium hawaiiense (Fisher).
Site: On tentacles.
Locality: Sagami Sea, Japan (Heegaard, 1944).
Notes: Length of 9 I. 13 mm , $\delta 0.97 \mathrm{~mm}$ (Stock, 1964). Genital segment of q in dorsal view with central part much enlarged. Caudal ramus of $ㅇ$ with ratio about 3:1. Rostrum with a beaklike point. Second antenna with second segment bearing very short hairs; fourth segment short, reaching only to articulation of claw.

Scambicornus idoneus (Humes \& Cressey, r961)
Preherrmannella idonea Humes \& Cressey, 1961.
Host: Holothuria (Halodeima) atra (Jaeger).
Site: Body surface.
Localities: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 196r; Humes, 1967); region of Nouméa, New Caledonia (Humes, 1975a); Moluccas and Eniwetok Atoll (present paper).
New records (all from Holothuria atra in the

Moluccas): 53 오, 57 ô $\hat{\text { on }}$, and 24 copepodids from 9 hosts, in 2 m , Natsepa, Ambon, $3^{\circ} 27^{\circ} \mathrm{O} 5^{\prime \prime} \mathrm{S}$,
 copepodids from I host, in 3 m , Poelau Parang, eastern Ceram, $3^{\circ} 17^{\circ} 00^{\prime \prime} \mathrm{S}, 130^{\circ} 44^{\prime} 48^{\prime \prime} \mathrm{E}, 23$ May 1975; 2 영 from 2 hosts, in 3 m , Poelau Gomumu, south of Obi, $\mathrm{I}^{\circ}{ }_{50} 0^{\prime} 00^{\prime \prime} \mathrm{S}, 127^{\circ} 30^{\prime} 54^{\prime \prime} \mathrm{E}, 30 \mathrm{May}$ 1975; i 9 , I ठ from 4 hosts, in 5 m , southwestern shore of Goenoeng Api, Banda Islands, $4^{\circ} 31^{\prime} 45^{\prime \prime} \mathrm{S}$, I29 ${ }^{\circ}{ }_{5} \mathrm{I}^{\prime} 55^{\prime \prime} \mathrm{E}, 2$ May 1975; i ô from I host, in 4 m, Pcelau Marsegoe, western Ceram, $2^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}$, I2 $8^{\circ} \mathrm{O} 3^{\prime} 40^{\prime \prime} \mathrm{E}$, I5 May 1975; i 9 from i host, in 3 m , Poelau Gomumu, south of $\mathrm{Obi}, \mathrm{I}^{\circ} 5^{\circ}{ }^{\prime} 00^{\prime \prime} \mathrm{S}$, $127^{\circ} 30^{\prime} 54^{\prime \prime} \mathrm{E}, 30 \mathrm{May} 1975$; i ô from I host, in 18 m , Poelau Naira, Banda Islands, $4^{\circ} 32^{\prime} 12^{\prime \prime} \mathrm{S}$, $129^{\circ} 53^{\prime} 40^{\prime \prime} \mathrm{E}, 2$ May 1975; 2 아 from i host, in 1.5 m , southwestern shore of Goenoeng Api, Banda Islands, $4^{\circ} 3 \mathrm{r}^{\prime} 45^{\prime \prime} \mathrm{S}$, $129^{\circ}{ }^{\circ} 1^{\prime} 55^{\prime \prime} \mathrm{E}, 2$ May 1975; 2 ô ठ̂ from I host, in 2 m , Karang Mie, eastern Halmahera, $00^{\circ} 20^{\prime} 07^{\prime \prime} \mathrm{N}, 128^{\circ} 25^{\prime} 0^{\prime \prime} \mathrm{E}$, 19 May 1975; I 9 from 4 hosts, in 4 m , Poelau Marsegoe, western Ceram, $2^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}, 128^{\circ} \mathrm{O} 3^{\prime} 30^{\prime \prime} \mathrm{E}, \mathrm{I}_{5}$ May 1975.

New record: 5 아, 1 ô from 2 Holothuria atra, in I m, in quarry, northern end of Eniwetok Island, Eniwetok Atoll, i4 June 1969. (The caudal ramus in the female is a little shorter than in typical idoneus, ranging from $91 \times 25 \mu \mathrm{~m}$ to $104 \times 23 \mu \mathrm{~m}$, but otherwise all features are similar).

Host: Actinopyga echinites (Jaeger).
Site: Body surface.
Localities: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1961); region of Nouméa, New Caledonia (Humes, 1975a); Mauritius (Humes, $1975^{\text {b }}$).

Host: Holothuria (Mertensiothuria) leucospilota (Brandt).
Site: Body surface.
Localities: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1961); region of Nouméa, New Caledonia (Humes, 1975a).

Host: Holothuria (Microthele) nobilis (Selenka).
Site: Body surface.
Localities: Region of Nosy Bé, northwestern Madagascar (Humes, 1967); region of Nouméa and southeastern New Caledonia (Humes, 1975a).

Host: Holothuria (Metriatyla) scabra Jaeger. Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes, 1967).

Host: Holothuria (Halodeima) edulis (Lesson).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Stock, 1973).

Host: Bohadschia argus Jaeger.
Site: Body surface.
Locality: Ceram, Moluccas (present paper).
New host record from Bohadschia argus: 5 여, io ôo from 2 hosts, in 3 m , Poelau Parang, eastern Ceram, $3^{\circ} 17^{\prime} 00^{\prime \prime} \mathrm{S}$, $130^{\circ} 44^{\prime} 48^{\prime \prime}$ E, 23 May 1975.
 genital segment with well developed wings and having rows of hairs on genital areas. Caudal ramus in 9 with ratio 5.23: I. Fourth segment of second antenna short, scarcely reaching articulation of claw. Second segment of δ maxilliped with two groups of small spines and with inner prominence between the two setae.

Scambicornus lobulatus Humes, I967
Host: Bohadschia graeffei (Semper).
Site: Body surface.
Localities: Region of Nosy Bé, northwestern Madagascar (Humes, 1967).

Host: Bohadschia argus Jaeger.

Site: Body surface.
Locality: Moluccas (present paper).
New host records (all from Bohadschia argus in the Moluccuas): 40 웅, i8 $\widehat{\delta} \hat{\delta}$ from I host, in Io m , southern shore of Goenoeng Api, Banda Islands, $4^{\circ} 32^{\prime} 05^{\prime \prime} \mathrm{S}, 129^{\circ} 5^{\prime} 30^{\prime \prime} \mathrm{E}, 26$ April 1975; 70 아, $45 \delta^{\delta} \delta$, II copepodids from I host, in 3 m southwestern shore of Goenoeng Api, Banda Islands, $4^{\circ} 3 \mathrm{I}^{\prime} 45^{\prime \prime} \mathrm{S}$, $129^{\circ} 5^{\prime} \mathrm{I}^{\prime} 55^{\prime \prime} \mathrm{E}, 2$ May $1975 ; 9$ if, 6 ô ${ }^{\prime}, 6$ copepodids from i host, in 5 m , Poelau Parang, eastern Ceram $3^{\circ} 17^{\prime} 00^{\prime \prime} \mathrm{S}, 130^{\circ}$ $44^{\prime} 48^{\prime \prime} \mathrm{E}, 23$ May 1975; 24 여, 16 ô ơ, 5 copepodids from 2 hosts, in 3 m , Poelau Gomumu, south of $\mathrm{Obi}, \mathrm{I}^{\circ} 5^{\prime} 00^{\prime \prime} \mathrm{S}, 127^{\circ} 30^{\prime} 54^{\prime \prime \mathrm{E}}, 30 \mathrm{May}$ 1975.

Host: Actinopyga echinites (Jaeger).
Site: Body surface.
Locality: Banda Islands, Moluccas (present paper).
New host record from Actinopyga echinites in the Moluccas: 2 아, I of from I host, in 2 m , Poelau Naira, Banda Islands, $4^{\circ} 31^{\prime} 45^{\prime \prime} \mathrm{S}, 129^{\circ} 53^{\prime} 35^{\prime \prime} \mathrm{E}$, 2 May 1975.
Notes: Length of 9 I .39 mm , ô 0.7 Imm . Genital segment of \cap with posteriorly directed lateral wings. Egg sac lobulate. Caudal ramus of q with ratio 2.9: I. Second antenna with fourth segment short, scarcely reaching to articulation of claw. Outer seta on basis of legs 3 and 4 very long, a little longer than exopod. Second segment of $\hat{\theta}$ maxilliped with small inner spines and with posterior surface covered with minute spinules.

Scambicornus modestus (Humes \& Cressey, 196ı)

Preherrmannella modesta Humes \& Cressey, 1961.
Host: Stichopus monotuberculatus (Quoy \& Gaimard).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1961).

Host: Stichopus chloronotus Brandt.
Site: Body surface.
Localities: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1961; Humes, 1967); region of Nouméa, New Caledonia (Humes, 1975a); Moluccas (present paper).
New records (all from Stichopus chloronotus in the Moluccas): 8 아, in $\delta \delta$ from i host, in 2 m , Karang Mie, eastern Halmahera, $00^{\circ} 20^{\prime} 07^{\prime \prime} \mathrm{N}$, $128^{\circ} 24^{\prime} 0^{\prime \prime} \mathrm{E}$, 19 May 1975; 6 오, 2 ô ô from I host, in 2 m , Karang Mie, 19 May 1975; 12 ㅇㅇㅇ, io $\delta \hat{\delta}$ of from I host, in 2 m , Karang Mie, 19 May 1975; 5 여, 7 ô $\hat{\delta}$ from I host, in 2 m , Karang Mie, 19 May 1975.

Host: Stichopus variegatus Semper.
Site: Body surface.
Localities: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1961; Humes, 1967); region of Nouméa, New Caledonia (Humes, 1975a).

Host: Stichopus horrens Selenka.
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (present paper).
New host record: I ㅇ, I of from one Stichopus horrens Selenka, intertidal under coral, eastern side of Ile Maître, near Nouméa, New Caledonia, $22^{\circ} 20^{\prime} 45^{\prime \prime} \mathrm{S}, 166^{\circ} 24^{\prime} 45^{\prime \prime}$ E, 31 July 197 I .

Host: Holothuria (Lessonothuria) pardalis Selenka.
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 196I).

Host: Bohadschia draschi Cherbonnier.
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 196I).

Host: Holothuria (Platyperona) difficilis (Semper) and Ohshimella ehrenbergi Selenka (hosts mixed at time of collection).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes, 1967).

Host: Holothuria (Thymioscyia) impatiens (Forskål).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes, 1967).

Host: black holothurian, probably Holothuria atra Jaeger.
Site: Body surface.
Locality: Seychelles (present paper).
New host record: 5 아, i $\delta \hat{\delta}$ from one black holothurian, probably Holothuria atra Jaeger, North Point, Mahe Island, Seychelles, 14 February 1964. Notes: Length of $9 \mathrm{~T} .18 \mathrm{~mm}, \delta 0.58 \mathrm{~mm}$. Female genital segment with posteriorly directed lateral wings; genital area with large spiniform process. Caudal ramus in 9 with ratio $2.7 \mathrm{I}: \mathrm{I}$, of I .55 : r . Fourth segment of second antenna short, scarcely reaching to articulation of claw.

Scambicornus petiti (Stock \& Kleeton, 1963)
Preherrmannella petiti Stock \& Kleeton, 1963.
Host: Stichopus regalis (Cuvier).
Site: Body surface.
Locality: Banyuls, France (Stock \& Kleeton, 1963).

Notes: Length of 9 I. 3 I-I. 32 mm , ô $0.79-0.84$ mm . Genital segment of q much longer than wide. Caudal ramus in 9 elongate, ratio approximately 7: 1 , os about $3.33: 1$. Fourth segment of second antenna short, reaching only about halfway to articulation of claw.

Scambicornus poculiferus (Humes \& Cressey, 1961)

Preherrmannella poculifera Humes \& Cressey, 1961.

Host: Synapta maculata (Chamisso \& Eysenhardt).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 196r; Humes, 1967); southeastern New Caledonia (Humes, 1975a); Moluccas (present paper).
New record from Synapta maculata in the Moluccas: 348 유, 362 ô ô, 146 copepodids from II hosts, in 3 m , Natsepa, Ambon, $3^{\circ} 37^{\circ} 05^{\prime \prime} \mathrm{S}$, 128° 11'00" $\mathrm{E}, 23$ April 1975.

Host: Opheodesoma grisea (Semper)
Site: Unknown.
Locality: Bohol Island, Philippines (present paper).
New host record from Opheodesoma grisea in the Philippines: 4 아, 2 § δ from one host, in 3 m , on sand flat with grass, Bohol Island, Philippines, $10^{\circ}{ }^{1} 6.8^{\prime} \mathrm{N}, 124^{\circ}{ }^{\circ} \mathrm{Io} .8^{\prime} \mathrm{E}, 22$ September 1975 . Thomas Forhan collector.
Notes: Length of $\oint \mathrm{r} .04 \mathrm{~mm}$, ô 0.66 mm . Female genital segment with moderately developed lateral wings. Caudal ramus in \circ with ratio $\mathrm{I} .57: \mathrm{I}$, ô r.72: . Fourth segment of second antenna elongate, reaching beyond claw. Second segment of second antenna of δ bearing four suckers. Second segment of $\hat{0}$ maxilliped with large flattened obtuse spines.

Scambicornus prolixus n. sp.
Fig. 24a-i, 25a-j
Type material. - i q from washings of three holothurians, Holothuria edulis Lesson, in I m, Pte. Lokobe, Nosy Bé, Madagascar, 5 November 1960. Holotype (dissected) deposited in the Zoollogisch Museum, Amsterdam.
Female. - Body (fig. 24a) elongate, more so than in any other species of Scambicornus. Length 1.2I mm and greatest width 0.38 mm , measured in lactic acid. Segment of leg i separated from head by a very weak dorsal transverse furrow. Epimeral areas of segments of legs 1-4 rounded. Ratio of length to width of prosome $\mathbf{\text { . 68: }}$ r. Ratio of length of prosome to that of urosome r.oi: I .

Segment bearing leg 5 (fig. 24b) $78 \times 146 \mu \mathrm{~m}$. Genital segment $187 \times 166 \mu \mathrm{~m}$ in greatest dimensions, in dorsal view widest in anterior two-thirds and abruptly narrowed in posterior third. Genital areas located laterally near middle of segment. Each genital area (fig. 24c) bearing two unequal setea, one seta $39 \mu \mathrm{~m}$ and smooth, other seta 104 $\mu \mathrm{m}$, delicately barbed and arising on a distinct pedicel. Three postgenital segments from anterior to posterior $70 \times 8 \mathrm{I}, 65 \times 84$, and $60 \times 83 \mu \mathrm{~m}$. Anal segment with row of very small posteroventral and posterodorsal spinules on each side.
Caudal ramus (fig. 24d) moderately elongate, $86 \times 3 \mathrm{r} \mu \mathrm{m}$ (width taken at middle), ratio $2.77: \mathrm{r}$. Outer lateral seta $102 \mu \mathrm{~m}$ and naked, displaced ventrally from lateral position in most other sabelliphilids. Dorsal seta $57 \mu \mathrm{~m}$, outermost terminal seta $99 \mu \mathrm{~m}$, and innermost terminal seta $66 \mu \mathrm{~m}$, all naked. Two long median terminal setae $216 \mu \mathrm{~m}$ (outer) and $260 \mu \mathrm{~m}$ (inner), both finely barbed and lacking proximal "joint" often seen in other Scambicornus.

Body surface with a few minute hairs (sensilla) as in figure 24 a.

Egg sac not seen.
Rostral area (fig. 24e) poorly defined.
First antenna (fig. 24f) $294 \mu \mathrm{~m}$ long. Lengths of seven segments (measured along their posterior nonsetiferous margins): 18 ($44 \mu \mathrm{~m}$ along anterior margin), 88, $26,52,37,29$, and $18 \mu \mathrm{~m}$ respectively. Formula for armature as in Scambicornus batiolatus above. All setae naked.

Second antenna (fig. 24 g) $198 \mu \mathrm{~m}$ long, segmented and armed as in S. batiolatus. Second segment with small inner spinules proximal to seta. Claw $50 \mu \mathrm{~m}$ along its axis. All setae naked.

Labrum (fig. 24 h), mandible (fig. 24i), and paragnath (fig. 24h) resembling in general form those of S. batiolatus. First maxilla (fig. 25a) with three terminal setae and a spiniform process and one subterminal seta. Second maxilla (fig. 25b) also resembling that of S. batiolatus, but inner seta on second segment with bilateral slender spinules; lash with one large proximal tooth in row of graduated slender spines (fig. 25c). Maxilliped (fig. 25 d) similar to that of S. batiolatus, but distal an-tero-inner surface with many minute spinules.

Ventral area between maxillipeds and first pair of legs (fig. 25e) only slightly protuberant.

Legs i-4 (figs. $25 \mathrm{f}, 25 \mathrm{~g}, 25 \mathrm{~h}, 25 \mathrm{i}$) with segmentation and spine and setal formula as in S. batiolatus. Leg 4 (fig. 25) with inner coxal seta about $26 \mu \mathrm{~m}$ and naked. Exopod $107 \mu \mathrm{~m}$. Endopod $97 \mu \mathrm{~m}$ long, with inner element on first segment a plumose seta, that on second segment a barbed spine. Five spines on third segment from outer to inner, $27,32,56,43$, and $26 \mu \mathrm{~m}$.

Leg 5 (fig. 25 j) with moderately elongate free segment $73 \times 23 \mu \mathrm{~m}$ (width taken at middle), ratio 3.17: . Outer terminal seta $78 \mu \mathrm{~m}$, inner terminal seta $133 \mu \mathrm{~m}$, both finely barbed. Dorsal seta $39 \mu \mathrm{~m}$ and smooth. Free segment with ventral row of spinules near insertion of two terminal setae.
Leg 6 represented by two setae on genital area (fig. 24c).

Color in life in transmitted light opaque gray, eye red.
Male. - Unknown.
Etymology. - The specific name prolixus, Latin meaning stretched out or elongate, alludes to the elongate body form and to the unusually long seta on the genital area.
Remarks. - Scambicornus prolixus differs from all other species of Scambicornus in its elongate body form and relatively slender prosome. The elongate seta on the genital area also is distinctive of the new species. The armature of the lash of the second maxilla, with a single large tooth in a graduated row of slender spines, differs from the armature of all other species in the genus.

Fig. 24. Scambicornus prolixus n. sp., female. a, dorsal (I) ; b, urosome, dorsal (D) ; c, genital area, dorsal (C); d, caudal ramus, dorsal (G) ; e, rostrum, ventral (E) ; f,
first antenna, dorsal (E) ; g, second antenna, posterior (C); h, labrum with position of paragnaths indicated by broken lines, ventral (G); i, mandible, posterior (G).

Fig. 25. Scambicornus prolixus n. sp., female. a, first maxilla, posterior (F) ; b, second maxilla, posterior (G); c, lash of second maxilla, posterior (H) ; d, maxilliped, antero-inner (G) ; e, area between maxillipeds and first
pair of legs, ventral (E) ; f, leg I and intercoxal plate, anterior (E) ; g, leg 2, anterior (E) ; h, endopod of leg 3, anterior (E); i, leg 4 and intercoxal plate, anterior (E); j, leg 5, dorsal (C).

Scambicornus retrospiculus n. sp.
Figs. 26a-g, 27a-j, 28a-1

Type material. - 14 웅, 22 ô $\widehat{\text { from holothurian, }}$ Stichopus variegatus Semper, in 7 m , on barrier reef, Bohol Island, Philippines, $10^{\circ} \mathrm{I} 5.88^{\prime} \mathrm{N}$, 124° 08.6I'E, 18 August 1975. Holotype 9 , allotype, and 29 paratypes (10 아, 19 ठ̂ ठै) deposited in the Zoölogisch Museum, Amsterdam; the remaining paratypes (dissected) in the collection of the author.
Female. - Body (fig. 26a) with prosome broad and relatively short. Length (not including setae on caudal rami) 1.37 mm ($1.34-1.4 \mathrm{Imm}$) and greatest width 0.68 ($0.6 \mathrm{I}-0.70 \mathrm{~mm}$), based on 10 specimens in lactic acid. Segment of leg i separated from head by a weak dorsal transverse furrow. Epimeral areas of segment of leg I pointed, those of legs 2-4 rounded. Ratio of length to width of prosome 1.26: I . Ratio of length of prosome to that of urosome $1.5: \mathrm{I}$.

Segment bearing leg 5 (fig. 26b) 125×192 $\mu \mathrm{m}$. Genital segment $177 \times 229 \mu \mathrm{~m}$, with lateral wings, each terminating in a posterolateral spiniform process. Genital areas situated laterally at posterior corners of wings. Each genital area (fig. 26 c) bearing two naked setae $39 \mu \mathrm{~m}$ and $83 \mu \mathrm{~m}$ and a row of spinules. Three postgenital segments from anterior to posterior $68 \times 82,55 \times 78$, and $75 \times 70 \mu \mathrm{~m}$. Anal segment (fig. 26d) with row of very small posteroventral spinules on each side.

Caudal ramus (fig. 26d) moderately elongate, $94 \times 3 \mathrm{I} \mu \mathrm{m}$, ratio 3:1. Outer lateral seta $234 \mu \mathrm{~m}$, sparsely plumose distally, displaced ventrally and distally from lateral position usual in most other sabelliphilids. Dorsal seta 2 II $\mu \mathrm{m}$ and weakly plumose distally. Outermost terminal seta $145 \mu \mathrm{~m}$, innermost terminal seta $164 \mu \mathrm{~m}$, both naked. Two long median terminal setae $440 \mu \mathrm{~m}$ (outer) and $770 \mu \mathrm{~m}$ (inner), both with lateral spinules (these frequently broken off in type material).

Body surface with a few small hairs (sensilla) and refractile points as in figure 26 .

Entire egg sacs not seen. Individual eggs about $52 \mu \mathrm{~m}$ in diameter.

Rostrum (fig. 26e) weakly developed with minute refractile bosses.

First antenna (fig. 26f) $436 \mu \mathrm{~m}$ long. Lengths
of seven segments (measured along their posterior nonsetiferous margins) : 34 ($65 \mu \mathrm{~m}$ along anterior margin), $16 \mathrm{I}, 34,75,44,3 \mathrm{I}$, and $26 \mu \mathrm{~m}$ respectively). Formula for armature as in Scambicornus batiolatus above. All setae naked.

Second antenna (fig. 26 g) $330 \mu \mathrm{~m}$ long, segmented and armed as in S. batiolatus. Claw 94 $\mu \mathrm{m}$ along its axis. All setae naked.

Labrum (fig. 27a), mandible (fig. 27b), paragnath (fig. 27a), and first maxilla (fig. 27c) similar in major features to those of S. batiolatus. Second maxilla (fig. 27d) also resembling that of S. batiolatus, but spinules on inner seta on second segment small and weak, and two subequal proximal teeth on lash much larger than succeeding spinules. Maxilliped (fig. 27e) similar to that of S. batiolatus.

Ventral area between maxillipeds and first pair of legs (fig. 27 f) not protuberant.

Legs 1-4 (figs. $27 \mathrm{~g}, 27 \mathrm{~h}, 27 \mathrm{i}, 27 \mathrm{j}$) with segmentation and spine and setal formula as in S. batiolatus. Leg 4 with inner coxal seta $20 \mu \mathrm{~m}$ and naked. Endopod of leg $4 \mathrm{I} 33 \mu \mathrm{~m}$ long, with inner elements on first and second segments setiform. Five spines on third segment from outer to inner $33,52,95$, 58 , and $40 \mu \mathrm{~m}$.

Leg 5 (fig. 28a) with small subrectangular free segment $34 \times 2 \mathrm{I} \mu \mathrm{m}$, ratio I .62 : I (length not including lamellar process). Outer terminal slender seta $62 \mu \mathrm{~m}$ and smooth. Inner terminal stout seta $86 \mu \mathrm{~m}$ with a row of minute spinules. Free segment near insertion of larger seta with a terminal ventral lamella having a minutely pectinate distal margin. Dorsal seta approximately $90 \mu \mathrm{~m}$ and weakly plumose distally.

Leg 6 represented by two setae on genital area (fig. 26c).

Color in life unknown.
Male. - Body (fig. 28b) with general form similar to female. Length (excluding setae on caudal rami) $0.69 \mathrm{~mm}(0.66-0.77 \mathrm{~mm})$ and greatest width 0.39 mm ($0.35-0.41 \mathrm{~mm}$), based on 10 specimens in lactic acid. Ratio of length to width of prosome 1.27: I. Ratio of length of prosome to that of urosome 2.05: 1 .

Segment bearing leg 5 (fig. 28c) $23 \times 71 \mu \mathrm{~m}$. Genital segment $104 \times 112 \mu \mathrm{~m}$, only slightly wider than long. Four postgenital segments from an-

Fig. 26. Scambicornus retrospiculus n. sp., female. a, dorsal (I) ; b, urosome, dorsal (D) ; c, genital area, dorsal (G); d, caudal ramus, dorsal (C) ; e, rostrum, ventral (B) ; f,

Fig. 27. Scambicornus retrospiculus n. sp., female. a, labrum with position of paragnaths indicated by broken lines, ventral (C); b, mandible, posterior (G) ; c, first maxilla, posterior (G) ; d, second maxilla, posterior (G) ; e, maxilliped, antero-inner (G) ; f, area between maxillipeds and
first pair of legs, ventral (E); g, leg I and intercoxal plate, anterior (E); j, leg 2, anterior (E); i, endopod of leg 3, anterior (E) ; j, leg 4 and intercoxal plate, anterior (E).

Fig. 28. Scambicornus retrospiculus n. sp., female: a, leg 5, dorsal (G). Male: b, dorsal (B) ; c, urosome, dorsal (C) ; d, distal part of second segment of first antenna, ventral (C) ; e, second antenna, anterior (C) ; f, maxilli-
ped, posterior (C); g, claw of maxilliped, ventral (G); h, endopod of leg 1 , anterior (C) ; i, endopod of leg 2, anterior (C) ; \mathbf{j}, endopod of leg 3, anterior (C) ; k, leg 5 , dorsal (F) ; 1, leg 6, ventral (C).
terior to posterior $26 \times 52,26 \times 49,23 \times 47$, and $27 \times 48 \mu \mathrm{~m}$.

Caudal ramus (fig. 28c) shorter than in female, 31 $\times 20 \mu \mathrm{~m}$, ratio 1.55: I .

Body surface with fine ornamentation similar to that of female.

Rostrum as in female. First antenna segmented and armed as in female, but a small aesthete added distally on second segment (fig. 28d) as in male of Scambicornus lobulatus Humes, 1967. Second antenna (fig. 28e) resembling that of female, but with small spines on inner surface of second segment.

Labrum, mandible, paragnath, first maxilla, and second maxilla like those of female. Maxilliped (fig. 28f) 4 -segmented, assuming that proximal part of claw represents fourth segment. First segment unarmed. Second segment with two slender naked setae, a group of slender spines, and a patch of very small spinules. Small third segment unornamented. Claw $148 \mu \mathrm{~m}$ along its axis, with a prominent proximally directed barb on concave margin (fig. 28 g), and bearing proximally two unequal setae, larger seta with barbules distally, smaller seta naked.

Ventral area between maxillipeds and first pair of legs like that of female.

Legs I-4 similar to those of female except for endopods of legs I-3. Endopod of leg I (fig. 28h) 2 -segmented, a little longer ($8 \mathrm{I} \mu \mathrm{m}$) than exopod ($70 \mu \mathrm{~m}$). Formula: o-i; II, 4, I. Spines barbed. Endopod of leg 2 (fig. 28i) 2 -segmented, longer ($96 \mu \mathrm{~m}$) than exopod ($78 \mu \mathrm{~m}$). Formula: o-I; I, II, 3, 2. Spines smooth with blunt slightly recurved spatulate tips. Endopod of leg 3 (fig. 28j) 3^{-} segmented, longer ($130 \mu \mathrm{~m}$) than exopod (95 $\mu \mathrm{m}$). Formula: o-i; o-2; I, III, 2. Spines smooth with blunt tips as in leg 2.

Leg 5 (fig. 28 k) with very small unornamented free segment to $\times 8 \mu \mathrm{~m}$, bearing terminally two unequal smooth setae approximately $30 \mu \mathrm{~m}$ and $50 \mu \mathrm{~m}$, with a smaller slender spiniform process between them. Dorsal seta about $28 \mu \mathrm{~m}$.

Leg 6 (fig. 281) a posteroventral flap on genital segment bearing two smooth setae $28 \mu \mathrm{~m}$ and a row of slender spinules.

Spermatophore not observed.
Color in life unknown.

Etymology. - The specific name retrospiculus, a combination of Latin retro meaning back or backwards and spiculus meaning pointed, refers to the proximally directed barb on the claw of the male maxilliped.
Remarks. - Scambicornus retrospiculus may be distinguished from all other species of Scambicor$n u s$ by the pointed proximally directed barb on the concave margin of the claw of the male maxilliped. In three species of Scambicornus this claw has processes or protuberances. Those in Scambicornus tuberatus (Humes \& Cressey, 1961) and Scambicornus tylotus Humes, 1975, are digitiform or knoblike. Only in Scambicornus brachysetosus Reddiah, 1963, does the claw have a spiniform process. In this species, however, the process is shorter and stouter than in Scambicornus retrospiculus. The concave surface of the maxilliped claw of S. brachysetosus is finely denticulate rather than smooth as in the new species. The genital segment of the female of S. brachysetosus lacks the lateral wings seen in S. retrospiculus.

Although careful comparison of S. retrospiculus with S. lobulatus Humes, 1967, will reveal several similarities, the two species may be readily separated. In S. lobulatus the wings of the female genital segment lack prominent spiniform processes, the spinules on the second segment of the male second antenna are present only proximally to the seta, and the concave margin of the claw of the male maxilliped is smooth, without protuberances.

Scambicornus sentifer n. sp.

Figs. 29a-i, 30a-i, 3ra-k
Type material. - 9 오, 4 ô ô from one holothurian, Labidodemas semperianum Selenka, in 3 m , Karang Mie, east central Halmahera $00^{\circ} 20^{\prime} 07^{\prime \prime} \mathrm{N}$, $128^{\circ} 25^{\prime} \mathrm{O} 0^{\prime \prime} \mathrm{E}$, 19 May 1975. Holotype 9 , allotype, and 8 paratypes ($69 \%, 2$ o δ°) deposited in the National Museum of Natural History, Smithsonian Institution, Washington, D.C.; the remaining paratypes (dissected) in the collection of the author.
Female. - Body (fig. 29a) with moderately broad prosome. Length (not including setae on caudal rami) 1.24 mm ($\mathrm{I} .20-\mathrm{r} .27 \mathrm{~mm}$) and greatest width 0.63 mm ($0.6 \mathrm{I}-0.65 \mathrm{~mm}$), based on eight specimens in lactic acid. Segment of leg a separated

Fig. 29. Scambicornus sentifer n. sp., female. a, dorsal (I) ; b, edge of segment of leg 1 , dorsal (C); c, urosome, dorsal (E); d, genital area, dorsal (F); e, segment of leg

5 and genital segment, lateral (E); f, caudal ramus, dorsal (G); g, egg sac, ventral (B); h, rostrum, ventral (D); i, first antenna, ventral (D).

Fig. 30. Scambicornus sentifer n. sp., female. a, second antenna, anterior (E) ; b, labrum, ventral (C); c, mandible, posterior (G); d, first maxilla, posterior (G) ; e, second maxilla, posterior (G); f, maxilliped, antero-inner
(G) ; g , area between maxillipeds and first pair of legs, ventral (E) ; h, leg I and intercoxal plate, anterior (E); i, leg 2, anterior (E).

Fig. 31. Scambicornus sentifer n. sp., female: a, third segment of endopod of leg 3 , anterior (E) ; b, leg 4 and intercoxal plate, anterior (E) ; c, leg 5, dorsal (F). Male: d, dorsal (I); e, urosome, dorsal (D); f, second antenna,
anterior (C) ; g, maxilliped, posterior (C) ; h, endopod of $\operatorname{leg} \mathrm{I}$, anterior (C) ; i, endopod of leg 2, anterior (C) ; j, leg 5, lateroventral (C); k, leg 6, ventral (E).
from head by a weakly defined dorsal transverse furrow. Epimeral areas of segment of leg I with prominent posteriorly directed thornlike process (fig. 2gb), those of segment of leg 2 narrowly rounded, and those of segment of leg 3 broadly rounded. Tergum of segment of leg 3 partly covering in dorsal view small segment of leg 4. Ratio of length to width of prosome 1.29: I. Ratio of length of prosome to that of urosome i.94: I .
Segment bearing leg 5 (fig. 29c) 104 $\times 135 \mu \mathrm{~m}$, bearing laterally in front of fifth legs a pair of broad lobes. Genital segment $135 \times 143 \mu \mathrm{~m}$, slightly wider than long. Genital areas situated at junction of middle and posterior thirds. Each genital area (figs. 29d, e) bearing two small naked setae approximately $12 \mu \mathrm{~m}$ long and a small spiniform process. Near these setae three elongate lobes, two acuminate and one obtuse. Three postgenital segments from anterior to posterior $47 \times$ $83,39 \times 73$, and $52 \times 75 \mu \mathrm{~m}$. Anal segment with row of extremely minute posteroventral spinules on each side.

Caudal ramus (fig. 29f) elongate, $70 \times 32 \mu \mathrm{~m}$, ratio 2.19: r. Outer lateral seta (displaced dorsally) $80 \mu \mathrm{~m}$, dorsal seta 1 Iо $\mu \mathrm{m}$, and outermost terminal seta $130 \mu \mathrm{~m}$, all naked. Innermost terminal seta I $48 \mu \mathrm{~m}$ with inner hairs. Two median terminal setae $495 \mu \mathrm{~m}$ (outer) and $880 \mu \mathrm{~m}$ (inner), both with short lateral spinules in their midregions and inserted between small dorsal flange (smooth) and ventral flange (with very small marginal spinules).
Body surface with a few hairs (sensilla) as in figures 29a, c.

Egg sac (fig. 29g) elongate, $705 \times 210 \mu \mathrm{~m}$, with numerous eggs ranging from $52-60 \mu \mathrm{~m}$ in diameter.

Rostrum (fig. 29h) broad with nearly transverse posteroventral margin.

First antenna (fig. 29i) $487 \mu \mathrm{~m}$ long. Lengths of seven segments (measured along their posterior nonsetiferous margins): 34 ($73 \mu \mathrm{~m}$ along anterior margin), 169, $31,86,58,49$, and $21 \mu \mathrm{~m}$ respectively. Formula for armature as in Scambicornus batiolatus above. All setae naked.

Second antenna (fig. 30a) $340 \mu \mathrm{~m}$ long including claw, segmented and armed as in S. batiolatus above. Ali setae smooth.
Labrum (fig. 3ob) with elongate posteroventral
lobes. Mandible (fig. 30c), paragnath (fig. 3ob), and first maxilla (fig. 3 od) resembling those of S. batiolatus. Second maxilla (fig. 3oe) with first tooth on lash distinctly larger than more distal teeth; otherwise generally similar to S. batiolatus. Maxilliped (fig. 3 of) resembling in major respects that of S. batiolatus but two setae on second segment jointed near base and third segment with minutely barbed apex and one of two small setae with unilateral barbules.

Ventral area between maxillipeds and first pair of legs (fig. 30g) only slightly protuberant.

Legs I-4 (figs. 3oh, 30i, 3ra, 3rb) with segmentation and armature as in S. batiolatus. Leg 4 with inner coxal seta $13 \mu \mathrm{~m}$ and naked. Endopod of leg $4 \mathrm{I} 22 \mu \mathrm{~m}$ long. Five spines on third segment from outer to inner $45,48,86,55$, and $30 \mu \mathrm{~m}$.

Leg 5 (fig. 3IC) small, free segment 19×14 $\mu \mathrm{m}$, ratio 1.36: I . Two terminal elements unequal, one spiniform, $39 \mu \mathrm{~m}$, with unilateral lamella, other setiform, $49 \mu \mathrm{~m}$, and smooth. Dorsal adjacent seta $70 \mu \mathrm{~m}$ and naked.

Leg 6 represented by two small setae on genital area (fig. 29d).

Color in life in transmitted light opaque gray, eye red, egg sacs gray.
Male. - Body (fig. 3rd) with prosome shaped nearly as in female. Length (excluding setae on caudal rami) 1.09 mm ($\mathrm{I} .0 \mathrm{I}-\mathrm{f} .10 \mathrm{~mm}$) and greatest width 0.49 mm ($0.46-0.53 \mathrm{~mm}$), based on three specimens in lactic acid. Epimera of segment of leg I with thornlike processes as in female. Ratio of length to width of prosome 1.36: r. Ratio of length of prosome to that of urosome i.4I:I.

Segment of leg 5 (fig. 3 re) $47 \times \mathrm{I} 30 \mu \mathrm{~m}$. Genital segment elongate, $247 \times 190 \mu \mathrm{~m}$, ratio I.3I: I, broadest posteriorly. Four postgenital segments from anterior to posterior $42 \times 75,42 \times$ $70,39 \times 68$, and $46 \times 70 \mu \mathrm{~m}$.

Caudal ramus resembling that of female but a little smaller, $6 \mathrm{I} \times 30 \mu \mathrm{~m}$, ratio 2.03 : I .

Body surface ornamented as in female.
Rostrum and first antenna as in female. Second antenna (fig. 3If) resembling that of female but seta on first segment with minute unilateral barbules and inner surfaces of second and third segment with numerous small spines.
Labrum, mandible, paragnath, first maxilla, and
second maxilla resembling those of female. Maxilliped (fig. 3 Ig) segmented and armed as in other species of genus. Claw nearly straight, $198 \mu \mathrm{~m}$ along its axis, with large terminal lamella, weakly subdivided about midway, and bearing proximally two very unequal setae, larger seta with barbed tip.

Ventral area between maxillipeds and first pair of legs as in female.

Legs I-4 similar to those of female except for endopods of legs I and 2. Endopod of leg I (fig. 3 rh) 2 -segmented, but second segment with indication of subdivision; length of endopod $104 \mu \mathrm{~m}$, longer than exopod ($88 \mu \mathrm{~m}$). Formula: o-I; II, I, 3, I. Two outer spines smooth, but inner spine barbed. Endopod of leg 2 (fig. 3Ii) 2-segmented, with less evidence of subdivision of second seg. ment than in leg I ; length of endopod $\mathrm{I} 22 \mu \mathrm{~m}$, longer than exopod ($96 \mu \mathrm{~m}$). Formula: o-1, I, II, 3, 2. Two outer spines smooth, inner spine fringed. Distalmost inner seta peculiarly reflexed on itself in all males seen. Endopods of legs 3 and 4 as in female.

Leg 5 (fig. 3ij) with small free segment $26 \times$ $20 \mu \mathrm{~m}$, ratio r.3I:I. Two terminal elements, one spinelike, $80 \mu \mathrm{~m}$, with unilateral fringe, other setiform, $33 \mu \mathrm{~m}$, and smooth. Adjacent dorsal seta about $50 \mu \mathrm{~m}$ and smooth.

Leg 6 (fig. 3 Ik) a posteroventral flap on genital segment bearing two smooth setae $52 \mu \mathrm{~m}$ and $39 \mu \mathrm{~m}$, and a pointed process. Larger spiniform process at posterior outer corners of segment.

Spermatophore not observed.
Color in life as in female.
Etymology. - The specific name sentifer, from Latin sentis, a thorn, and fero, to bear, refers to the thornlike process on each side of the segment of leg I .
Remarks. - Scambicornus sentifer differs from all its congeners in having a thornlike process on both epimera of the segment of leg I (these processes being much more acutely pointed than in Scambicornus retrospiculus (above). The three elongate lobes near the genital area of the female are also distinctive of this species.

Scambicornus sewelli Humes, 1975
Host: Holothuria (Halodeima) edulis (Lesson). Site: Body surface.

Locality: Region of Nouméa, New Caledonia (Humes, 1975a).

Host: Holothuria (Acanthotrapeza) coluber (Semper).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).

Host: Holothuria (Halodeima) atra (Jaeger).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).

Host: Holothuria (Mertensiothuria) fuscocinerea (Jaeger).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).

Host: Actinopyga echinites (Jaeger).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).

Host: Holothuria (Microthele) nobilis (Selenka). Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, i975a).
Notes: Length of 91.14 mm , δ o. 7 I mm . Female genital segment with lateral wings turned inwardly and ending in small flange. Caudal ramus in $ㅇ$ with ratio 2.19: i, ô I.38: . Fourth segment of second antenna short, not reaching to articulation of claw. Outer seta on basis of leg 4 longer than exopod. Leg 5 small, in $922 \times 16 \mu \mathrm{~m}$, in δ io $\times 7.5 \mu \mathrm{~m}$. Convex margin of claw of δ maxilliped with sclerotization interrupted at five points, where margin protrudes on slight knob.

Scambicornus subgrandis (Humes \& Cressey, 1961)

Preherrmannella subgrandis Humes \& Cressey, ig6i.
Host: Labidodemas rugosum (Ludwig).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 196r).
Notes: Length of $\uparrow \mathrm{I} .40 \mathrm{~mm}$, δ o. 68 mm . Female genital segment wider than long, with lateral wings. Genital areas with rows of long hairs. Cau-
dal ramus of q with ratio 2.50 : r, δ I 1.39 : 1. Fourth segment of second antenna short, scarcely reaching articulation of claw.

Scambicornus subtilis (Humes \& Cressey, 196r)
Preherrmannella subtilis Humes \& Cressey, 1961.
Host: Holothuria (Halodeima) edulis (Lesson).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1961); region of Nouméa, New Caledonia (Humes, 1975a).

Host: Opheodesoma grisea (Semper).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 196r).

Host: Holothuria (Mertensiothuria) fuscocinerea (Jaeger).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 196I); region of Nouméa, New Caledonia (Humes, 1975a).

Host: Holothuria (Acanthotrapeza) coluber Semper.
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).
Host: Holothuria (Halodeima) atra (Jaeger).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a); Moluccas (present paper).
New record from Holothuria atra in the Moluccas: I 9 from 4 hosts, in 5 m , southwestern shore of Goenoeng Api, Banda Islands, $4^{\circ} 31^{\prime} 45^{\prime \prime} \mathrm{S}$, $129^{\circ} 51^{\prime} 55^{\prime \prime} \mathrm{E}, 2$ May 1975.

Host: Actinopyga echinites (Jaeger).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).
Host: Holothuria (Microthele) nobilis (Selenka). Site: Body surface.
Locality: Region of Nouméa and southeastern New Caledonia (Humes, 1975a).
Notes: Length of $\$ 1.16 \mathrm{~mm}$, ot 0.6 rmm . Female genital segment wider than long, with posteriorly directed lateral wings. Caudal ramus in $ㅇ+$ with
ratio $1.67:$ I, δ of about 1: 1 . Fourth segment of second antenna short, not reaching to articulation of claw. Second segment of ô maxilliped bearing in addition to usual two setae two groups of slender spines and group of small spines.

Scambicornus tuberatus (Humes \& Cressey, 196I)

Preherrmannella tuberata Humes \& Cressey, 196I
Host: Bohadschia sp.
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1961).

Host: Bohadschia koellikeri (Semper).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 196i).

Host: Thelenota ananas (Jaeger).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1961).

Host: Opheodesoma grisea (Semper).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 196ı).

Host: Bohadschia cousteani Cherbonnier.
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1961).

Host: Bohadschia marmorata Jaeger.
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes, 1967).

Host: Bohadschia vitiensis (Semper).
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Stock, 1973); region of Nouméa, New Caledonia (Humes, 1975a).

Host: Bohadschia argus (Jaeger).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a); Moluccas (present paper).
New records (all from Bohadschia argus in the
 Poelau Marsegoe, western Ceram, $2^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}$, $128^{\circ} \mathrm{O} 3^{\prime} 3^{\prime \prime} \mathrm{E}$, 15 May 1975; 2 ô ô from 2 hosts in 4 m , Poelau Marsegoe, I_{5} May 1975; 2 ठ $\begin{gathered}\text { ot }\end{gathered}$ from i host, in 3 m , Karang Mie, eastern Halmahera, $00^{\circ} 20^{\prime} 07^{\prime \prime} \mathrm{N}, 128^{\circ} 25^{\prime} 00^{\prime \prime} \mathrm{E}$, 19 May 1975. Notes: Length of 9 i. 05 mm , ô 0.68 mm . Female genital segment a little wider than long with rounded lateral margins but lacking lateral wings. Caudal ramus of O with ratio 2.38:1, ठ 2.16:1. Fourth segment of second autenna short, not reaching to articulation of claw. Maxilliped of ot with second segment having inner proximal expansion and bearing prominent obtuse spines; claw having proximal digitiform protuberance on concave side and slightly swollen distally.

Scambicornus tylotus Humes, 1975
Host: Bohadschia argus (Jaeger).
Site: Body surface.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a); Moluccas (present paper).
New records (all from Bohadschia argus in the Moluccas): 18 \$ $9,3 \delta^{\circ} \delta^{\circ}$ from 1 host, in 3 m , Poelau Marsegoe, western Ceram $2^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}$,
 2 hosts, in 4 m , Poelau Marsegoe, I5 May 1975; I 9 from I host, in 3 m , Karang Mie, eastern Halmahera, $00^{\circ} 20^{\prime} 07^{\prime \prime} \mathrm{N}, ~ \mathrm{I} 28^{\circ} 25^{\prime} \mathrm{O}{ }^{\prime \prime} \mathrm{E}$, 19 May 1975; I 9 from 2 hosts, in 3 m , Poelau Parang, eastern Ceram, $3^{\circ} 17^{\prime} 00^{\prime \prime} \mathrm{S}$, $130^{\circ} 44^{\prime} 49^{\prime \prime} \mathrm{E}, 23$ May 1975.
Notes: Length of ${ }_{+} 1.19 \mathrm{~mm}$, ô 1.03 mm . Genital segment of \circ wider than long, anterior threefourths laterally expanded and posterior fourth abruptly narrowed. Caudal ramus in 9 with ratio 2.5: I, © 2.12: i. Fourth segment of second antenna short, hardly reaching to articulation of claw. Concave margin of claw of ot maxilliped undulating, with three knoblike processes; claw distinctly narrowed between distal two of these processes.

Key to the species of Scambicornus associated with holothurians
I. Body of female elongate, ratio of length to width 3.18: I; one of two setae on genital area unusually long ($104 \mu \mathrm{~m}$) S. prolixus Body of female not elongate, ratio of length to width less than 2.3:1; setae on genital area
not unusually long
2
2. Leg 5 in female bell-shaped, much wider proximally than distally; genital segment with pair of dorsolateral toothlike protuberances S. campanulipes Leg 5 in female subrectangular, or if shaped otherwise not wider proximally than distally; genital segment lacking pair of dorsolateral toothlike protuberances 3
3. Third outer spine on third segment of exopod of leg I unusually long (as long as exopod)
S. calcaratus

This spine not unusually long
4
4. Egg sac lobulate S. lobulatus Egg sac symmetrical 5
5. Concave side of claw of male maxilliped with protuberances or processes 6 Concave side of claw of male maxilliped without protuberances or processes 9
6. Concave side of claw of male maxilliped with spiniform process 7 Concave side of claw of male maxilliped with digitiform protuberance or knoblike processes .. 8
7. Concave margin of claw of male maxilliped finely denticulate, spiniform process stout and short S. brachysetosus Concave margin of claw of male maxilliped smooth, spiniform process long and barblike S. retrospiculus
8. Concave margin of claw of male maxilliped with one rounded digitiform protuberance S. tuberatus Concave margin of claw of male maxilliped with three knoblike processes S. tylotus
9. With suckers on second segment of male second antenna Io
Without suckers on second segment of male second antenna II
10. With four suckers on second segment of male second antenna; caudal ramus of female about I.6:1 S. poculiferus With i8 suckers on second segment of male second antenna; caudal ramus of female 3.77: 1 S. batiolatus
ir. Convex margin of claw of male maxilliped with sclerotization interrupted at five slightly protruding knobs
S. sewelli

Convex margin of claw of male maxilliped smooth, sclerotization not interrupted 12
12. Caudal ramus of female at least 5: 1...... I3

Caudal ramus of female less than 4: I ... 14
13. Caudal ramus of female about $6: 1$... S. petiti Caudal ramus of female about 5.2: I
\qquad
14. Epimera of segment of leg I with prominent posteriorly directed process; sides of female genital segment in dorsal view not expanded S. sentifer Epimera of segment of leg I without thornlike process; sides of female genital segment expanded 15
15. Genital segment of female expanded but without lateral wings; rostrum with beak-shaped point S. hamatus Genital segment of female expanded to form prominent lateral wings; rostrum weakly defined, without beak-shaped point \qquad
16. Length of female 1.40 mm ; free segment of $\operatorname{leg} 56 \mathrm{I} \times 29 \mu \mathrm{~m}$, ratio $2 . \mathrm{I}: \mathrm{I}$
S. subgrandis Length of female less than I .25 mm ; free segment of leg 5 approximately $37 \times 22 \mu \mathrm{~m}$, ratio less than I .8: I
17. Caudal ramus of female 2.7:1 ... S. modestus Caudal ramus of female $1.67: 1$... S. subtilis

Synapticola Voigt, 1892

Body transformed, elongate. First antenna 7 -segmented. Second antenna 4 -segmented, with one claw on third segment. Legs 1-4 with 3 -segmented exopods and 2 -segmented endopods. Endopod of leg 4 with o-r; III. Leg 5 lacking free segment and consisting of two setae arising from cuticular ring and an adjacent seta. Concave margin of claw of $\hat{\delta}$ maxilliped with group of small spines followed by ragged fringe.

Synapticola teres Voigt, 1892

Host: Polyplectana kefersteini (Selenka).
Site: Body cavity.
Locality: Amboina (Voigt, 1892).
Host: Synapta maculata (Chamisso \& Eysenhardt).
Site: Posterior intestine.

Locality: Queensland, Australia (Humes, 1979). Cucumaricolidae Bouligand \& Delamare-Deboutteville, 1959
Cucumaricola Paterson, 1958
Body strongly modified and transformed. Sexually dimorphic. No mandibles or maxillae in adults. Maxilliped in ot uncinate, in 9 a bulbous protuberance. Three pairs of legs, in δ small, each with terminal clawlike process and three verrucose areas; in $ㅇ+$ first pair of legs small, second and third pairs very large, unjointed, bilobed, and somewhat boot-shaped. Life cycle: nauplius (probably several instars) within egg membrane, followed by free active swimming copepodid, quiescent copepodid, juvenile, and adult.

Cucumaricola notabilis Paterson, 1958

Host: Cucumaria frauenfeldi Ludwig.
Site: In cysts in coelom.
Locality: Cape Town, South Africa.
Notes: Length of $\%$ approximately 35 mm , ot 4.0 mm .

Lichomolgidae Kossmann, 1877
Metaxymolgus Humes \& Stock, 1972
Body cyclopiform. First antenna 7 -segmented. Second antenna 4 -segmented, with two claws on fourth segment. Legs i-4 with 3 -segmented rami except endopod of leg 4 which is 2 -segmented, with formula o-r; II, seta being feathered.

Metaxymolgus cuspis (Humes, 1964)

Host: Holothurians.
Site: In washings.
Locality: Gulf of Manaar, southeastern India (Sebastian, 1972).
Notes: Length of 9 I .53 mm , o I .3 Imm . According to Sebastian the presence of this copepod on holothurians is probably accidental. M. cuspis is associated with the giant actiniarian Stoichactis in Madagascar (Humes, 1964) and India (Sebastian, 1972).

Stellicola Kossmann, 1877
Body cyclopiform, in 9 with broad prosome. Urosome in 95 -segmented, in ô fundamentally 6 -segmented but segment of leg 5 fused with genital segment. First antenna 7 -segmented. Second an-
tenna 3 -segmented with one terminal claw. Legs I-4 with 3 -segmented rami except leg 4 endopod which is 2 -segmented with formula o-I; II, I (but o-I; II in Stellicola pollex Humes \& Ho, 1967).

Stellicola holothuriae (Ummerkutty, 1962)

 Figs. 32a-j, 33a-k.Lichomolgus holothuriae Ummerkutty, 1962.
Host: Holothurians.
Site: In washings.
Locality: Gulf of Mannar, southeastern India (Ummerkutty, 1962).
Notes: Length of 9 I. $2 \mathrm{~mm}, \delta \widehat{0} 0.75 \mathrm{~mm}$.

Host: Opheodesoma spectabilis Fisher.

Site: In washings.
Locality: Nosy Bé, northwestern Madagascar (present paper).
New host record: $3 \delta \hat{\delta}$, i 9 from two Opheodesoma spectabilis, in 3 m , on sand flat with Cymodocea, west of Pte. Mahatsinjo, Nosy Bé, Madagascar, 7 August 1960.

Redescription of Stellicola holothuriae (Ummerkutty, i962) based on specimens from Opheodesoma spectabilis:
Male. - Body (fig. 32a) flattened. Length (not including setae on caudal rami) 0.73 mm ($0.70-$ 0.75 mm) and greatest width 0.43 mm (0.42 - 0.45 mm), based on three specimens in lactic acid. Ratio of length to width of prosome 1.I7: . Ratio of length of prosome to that of urosome 2.22: I .

Segment of leg 5 (fig. 32b) fused with genital segment. Combined segment $122 \mu \mathrm{~m}$ long, ir $3 \mu \mathrm{~m}$ wide at level of fifth legs, and $108 \mu \mathrm{~m}$ wide in area of genital segment. Four postgenital segments from anterior to posterior $34 \times 58,34 \times 53$, 26×49, and $29 \times 49 \mu \mathrm{~m}$.

Caudal ramus (fig. 32c) quadrate, $23 \times 22 \mu \mathrm{~m}$. Outer lateral seta $42 \mu \mathrm{~m}$ and dorsal seta $47 \mu \mathrm{~m}$, both smooth. Outermost terminal seta $109 \mu \mathrm{~m}$ and innermost terminal seta $117 \mu \mathrm{~m}$, with widely spaced lateral hairs. Two long median terminal setae $240 \mu \mathrm{~m}$ (outer) and 385 (inner), both with lateral hairs. Proximally on outer edge of ramus a slender setule about $16 \mu \mathrm{~m}$ long.

Body surface with a few hairs (sensilla) as in figure 32a.

Rostrum (fig. 3^{2} d) with rounded, well sclero. tized posteroventral margin.

First antenna (fig. 32e) $226 \mu \mathrm{~m}$ long. Lengths of seven segments (measured along their posterior nonsetiferous margins): 36 ($33 \mu \mathrm{~m}$ along anterior margin), $72,30,35,24,13$ and $16 \mu \mathrm{~m}$ respectively. Formula for armature: $4,13,6,3,4+1$ aesthete, $2+1$ aesthete, and $7+1$ aesthete. All setae naked.

Second antenna (fig. 32f) $218 \mu \mathrm{~m}$ long. Third segment in $4 \mu \mathrm{~m}$ long. Formula: i, i, 3 plus claw and five setules. Claw $65 \mu \mathrm{~m}$ along its axis.

Labrum (fig. 32 g) with two rounded posteroventral lobes. Mandible (fig. $3^{2 h}$) slender. Paragnath a small hairy lobe (fig. 32 g). First maxilla (fig. 32i) with three setae. Second maxilla (fig. 32 j) with large dentiform process at proximal end of lash. Maxilliped (fig. 33a) 4-segmented, assuming that proximal part of claw represents fourth segment. First segment unornamented. Second segment with two naked setae and circlet of small spines on inner surface. Small third segment unornamented. Claw $70 \mu \mathrm{~m}$ along its axis, bearing two unequal setae proximally, and showing very slight irregularities midway on concave margin.

Ventral area between maxillipeds and first pair of legs (fig. 33b) not protuberant.

Legs $1-4$ (figs. $33 \mathrm{c}, 33 \mathrm{~d}, 33 \mathrm{e}, 33^{\mathrm{f}}$) with same segmentation and armature as in other species of genus, for example, Stellicola illgi Humes \& Stock, 1973. Leg 4 with inner coxal seta very short, $5 \mu \mathrm{~m}$. Exopod $55 \mu \mathrm{~m}$ long. Endopod with first segment $22 \times 14 \mu \mathrm{~m}$, with inner distal seta $94 \mu \mathrm{~m}$; second segment $2 \mathrm{I} \times 12 \mu \mathrm{~m}$, with two spines $22 \mu \mathrm{~m}$ (outer) and $46 \mu \mathrm{~m}$ (inner) and inner seta $66 \mu \mathrm{~m}$.

Leg 5 (fig. 33 g) with very small free segment ro $\times 8 \mu \mathrm{~m}$. Two terminal setae $7 \mathrm{I} \mu \mathrm{m}$ and 47 $\mu \mathrm{m}$, both delicately barbed. Dorsal seta $40 \mu \mathrm{~m}$ and apparently smooth.

Leg 6 (fig. 33g) a posteroventral flap on genital segment bearing two setae $62 \mu \mathrm{~m}$ (very finely barbed) and $39 \mu \mathrm{~m}$ (smooth).

Spermatophore not observed except inside body of male.

Living specimens in transmitted light opaque gray, eye red.
Female. - Body form resembling that of male,

Fig. 33. Stellicola holothuriae (Ummerkutty, 1962). Male: a, maxilliped, postero-inner (F) ; b, area between maxillipeds and first pair of legs, ventral (E); c, leg I and intercoxal plate, anterior (C) ; d, leg 2, anterior (C) ; e,
endopod of leg 3, anterior (C); f, leg 4 and intercoxal plate, anterior (C); g, leg 5 and leg 6, ventral (C). Female : h, urosome, dorsal (E); i, leg 6, ventral (G) ; j, second maxilla, anterior (G); k, maxilliped, posterior (G).
with prosome slightly wider. Length of single specimen studied 0.99 mm and greatest width 0.67 mm .

Segment of leg 5 (fig. 33 h) $117 \times 180 \mu \mathrm{~m}$, not fused with genital segment. Genital segment 120 $\times 157 \mu \mathrm{~m}$, wider than long, in dorsal view with truncate lateral margins. Genital areas located posteroventrally. Each area (fig. 33i) bearing two unequal smooth setae io $\mu \mathrm{m}$ and $26 \mu \mathrm{~m}$, longer seta arising on distinct prominence.

Egg sac not observed.
Caudal ramus, body surface ornamentation, rostrum, first antenna, second antenna, labrum, mandible, paragnath, and first maxilla as in male. Second maxilla (fig. 33 j) with lash having several strong proximal spines graduating distally to smaller size, instead of a single large proximal dentiform process as in male (compare with figure 32 j). Inner spine on second segment stouter than in male. Maxilliped (fig. 33k) with two small setae on second segment and one small setae on third segment near clawlike tip.

Ventral area between maxillipeds and first pair of legs as in male.

Legs $1-4$ as in male.
Leg 5 (fig. 33 h) with free segment 25×13 $\mu \mathrm{m}$. Two terminal setae $78 \mu \mathrm{~m}$. Dorsal seta $52 \mu \mathrm{~m}$.

Leg 6 represented by two setae on genital area (fig. 33 i).

Living specimens colored as in male.
Remarks. - The specimens from Opheodesoma spectabilis agree fully with the main features of Ummerkutty's (1962) description of Lichomolgus holothuriae from holothurian washings in southeastern India. Apparent small differences in details between the copepods from India and those from Madagascar are probably not real, but rather are founded on lack of sufficient information in the description and figures of the Indian material. Lichomolgus holothuriae is a true Stellicola and was transferred to that genus by Humes \& Ho (1967).

Zygomolgus Humes \& Stock, 1972.
Body cyclopiform. First antenna 7 -segmented. Second antenna 4 -segmented, third segment with a clawlike element and fourth segment with four claws. Mandible with a slender base merging into
a long lash. Legs I-4 with 3 -segmented rami except leg 4 endopod which is 2 -segmented with $\mathrm{O}-\mathrm{I}$; II, seta feathered.

Zygomolgus tenuifurcatus (Sars, 1917)

Lichomolgus tenuifurcatus Sars, 1917.
Host: Labidoplax digitata (Montagu).
Site: Attached to host.
Locality: Northern Ireland (Gotto, 1954).
Notes: Length of $\xlongequal[+]{ } 1.40 \mathrm{~mm}$ (Sars, 1917), ô unknown.

Pseudanthessiidae Humes \& Stock, 1972
Pseudanthessius Claus, 1889
Body cyclopiform. Urosome in most species 5^{-} segmented in 9,6 -segmented in δ. First antenna 7 -segmented. Second antenna 4 -segmented with variable terminal armature ($\mathrm{I}-4$ claws or clawlike spines, lamelliform elements, or setae). Legs I-4 with 3 -segmented rami except leg 4 endopod which is r -segmented with two distal elements. Leg 5 lacking a free segment and represented by three elements.

Pseudanthessius deficiens Stock, Humes \& Gooding, 1963a

Host: Holothuria (Halodeima) mexicana (Ludwig).
Site: In washings.
Locality: Curaçao (Stock, Humes \& Gooding, 1963).

Notes: Length of $90.975-\mathrm{I} .30 \mathrm{~mm}, \delta 0.7-0.8 \mathrm{~mm}$. Urosome in this species 4 -segmented in $甲, 5$-segmented in δ. (Pseudanthessius deficiens usually occurs on Ophiuroidea. The single collection from a holothurian probably represents contamination).

Pseudanthessius pectinifer Stock, Humes \& Gooding, r963a)
Host: Actinopyga agassizii (Selenka).
Site: In washings.
Locality: Bahamas (Stock, Humes \& Gooding, 1963).

New record: 6 우, 5 ồ from 21 Actinopyga agassizii in 1 m, west of northern end of Pigeon Cay, Bimini Lagoon, Bahamas, 4 June 1959.

Notes: Length of $\$ 0.84$-1.10 mm, os o.79-0.84 mm . Caudal ramus about as long as wide. Spine on third segment of endopod of male leg a modified into a long, curved, unilaterally strongly pectinate element. (Pseudanthessius pectinifer usually occurs on Echinoidea).

Clausiidae Giesbrecht, I895b
Synaptiphilus Canu \& Cuénot, 1892
Body cyclopiform. First antenna 6-segmented, with first segment armed with two or three strong clawlike processes. Second antenna 4 -segmented, with one claw on very short third segment; fourth segment with several bent spatulate setae. Mandible simple, with denticulate spine, shorter spine with fine barbules, and small seta with long barbules. Maxilliped 2 -segmented in both sexes, sexually dimorphic, in δ subcheliform with large hand opposing claw. Legs $\mathrm{I}-4$ in both sexes with 3 -segmented exopods and 2 -segmented endopods. Leg I endopod with formula o-I, I, I, I; leg 4 endopod with o-i; I, I. Leg 5 with free segment bearing four setae.
(This genus was originally placed in a separate family, the Synaptiphilidae, by Bocquet (1952).
Synonyms are: Colaceutes Hartmann, 1896 (synonymy by Stock, 1968) and Remigulus T. \& A. Scott, 1893 (synonymy by T. \& A. Scott, 1897).

Synaptiphilus luteus Canu \& Cuénot, 1892
(Note: The list of hosts of this and other species of Synaptiphilus follows that of Barel \& Kramers, 1977).

Host: Labidoplax digitata (Montagu).
Site: Anterior body surface and tentacles, anterior part of digestive tube (Bocquet \& Stock, 1957).
Localities: Trieste (Hartmann, 1856); Arcachon, France (Cuénot, 1892, 1912); Naples (Cuénot, 1912).

Host: "Synapta inhaerens" (Cuénot in 1892 did not distinguish different species of Leptosynapta). Site: Skin, tentacular region.
Locality: Roscoff, Arcachon, France (Cuénot, 1892).

Host: Leptosynapta bergensis Oestergren.
Site: Anterior part of body.

Locality: Plymouth, England (Barel \& Kramers, 1970).

Host: Leptosynapta inhaerens (Müller).
Site: Unknown.
Locality: Roscoff, France (Barel \& Kramers, 1970).

Host: Leptosynapta galliennei (Herapath).
Site: Anterior body surface, tentacles, esophagus (Bocquet \& Stock, 1957).
Localities: Roscoff, Arcachon, France (Cuénot, 1912); Roscoff (Bocquet, 1952; Bocquet \& Stock, 1957); Penpoull, France (Stock in Gooding, 1963).

Notes: Length of $\$ 0.8 \mathrm{~mm}, 60.45 \mathrm{~mm}$ (Bocquet \& Stock, $1957, \$ 1.2 \mathrm{~mm}$ and $\delta 0.7 \mathrm{~mm}$ according to Canu \& Cuénot (i892). Third segment of exopod of leg i with III, I, 4. Free segment of leg 5 in 9 very broad, subcircular.

Synaptiphilus cantacuzenei cantacuzenei Bocquet \& Stock, 1957
Host: Labidoplax digitata (Montagu).
Site: Anterior part of body, tentacles, esophagus (Bocquet \& Stock, 1957).
Localities: Morgat, Concarneau, France (Bocquet \& Stock, 1957); Gulf of Naples (Stock, 1959); Banyuls, France (Guille \& Laubier, 1965), as a new subspecies.
Notes: Length of $\% 0.7-0.9 \mathrm{~mm}$, δ o $0.45-0.5 \mathrm{~mm}$ (Bocquet \& Stock, 1957). Third segment of endopod of leg i with III, I, 3 . Free segment of leg 5 in 9 oval. Outer margin of second segment of endopod of leg I with a very fine file; outer margin of first segment with spiniform setae.

Synaptiphilus cantacuzenei mixtus Guille \& Laubier, 1965
Host: Labidoplax digitata (Montagu).
Site: Not recorded.
Locality: Banyuls, France, in 60 m (Guille \& Laubier, 1965).
Notes: This subspecies is distinguished from S. cantacuzenei cantacuzenei by longer and more numerous spines on both body and appendages, distal segment of O maxilliped with cluster of long slender setae, and dimensions of various parts, for example, lengths of endopods of leg I-4.

Synaptiphilus tridens (T. \& A. Scott, 1893)

Host: Leptosynapta inhaerens (Müller).
Site: Not recorded, but probably similar to other Synaptiphilus.
Localities: Roscoff, Finistère, France (Bocquet \& Stock, 1957); northern Ireland (Gotto, 1966).

Host: Leptosynapta cruenta Cherbonnier.

Site: Not recorded, but probably similar to other Synaptiphilus.
Locality: Roscoff, Finistère, France (Bocquet \& Stock, 1957).
Notes: Length of $\$ 0.8-0.9 \mathrm{~mm}$, $\delta 0.55 \mathrm{~mm}$. First segment of endopod of leg 1 with an inner row of long setae. Third segment of first antenna elongate, much longer than second segment. Free segment of leg 5 in \oint oval. (This species was found free-living in western Scotland by T. \& A. Scott, 1893).

Family uncertain

Gomphopodarion Humes, 1974

Body elongate and modified, without external segmentation. First antenna 4 -segmented. Second antenna 3 -segmented. Legs i-4 biramous, with small i-segmented exopods and elongate, peglike, unarmed endopods. Leg 5 a large subspherical lobe. ô unknown.

Gomphopodarion byssoicum Humes, 1974

Host: Oneirophanta mutabilis Theel.
Site: Exact location unknown, but presumably internal.
Locality: $50^{\circ} 04.7^{\prime} \mathrm{N}, 15^{\circ} 44.8^{\prime} \mathrm{W}$, west of Ireland, in 4426-4435 m.
Notes: Length of 9 I .95 mm .

Siphonostoma

Asterocheridae Giesbrecht, 1899
Asterocheres Boeck, 1859
Body cyclopoid. First antenna 20 -segmented. Second antenna 5 -segmented. Siphon present. Mandible with palp. Legs I-4 biramous throughout, with each ramus 3 -segmented.

Asterocheres boecki (Brady, 1880)
Host: Holothuria (Panningothuria forskali) Delle Chiaje.
Site: In washings.
Locality: Gulf of Naples (Giesbrecht, 1899, p. 200).

Notes: Length of $\%$ about $0.90 \mathrm{~mm}, \delta 0.75 \mathrm{~mm}$ (Sars, 1915), ㅇ $0.6-0.65 \mathrm{~mm}$, क 0.5 mm (Giesbrecht, 1897). Giesbrecht found this copepod only in isolated cases in washings of the holothurian and was not certain that a regular relationship existed between the animals.

Brychiopontiidae Humes, 1974
Brychiopontius Humes, 1974
Body relatively unmodified. First antenna of 9 I8-segmented, with aesthete located on segment 15 . First antenna of δ geniculate, 15 -segmented, with aesthete on segment i4. In both sexes second antenna and maxilliped bearing terminally a broad lamelliform element. Large recurved outer spine on first segment of leg I endopod.

Brychiopontius falcatus Humes, 1974
Host: Oneirophanta mutabilis Theel.
Site: Exact location unknown; perhaps external surface.
Locality: $50^{\circ} 04.7^{\prime} \mathrm{N}, 15^{\circ} 44.8^{\prime} \mathrm{W}$, west of Ireland, in $4426-4435 \mathrm{~m}$.
Notes: Length of 9 I. 30 mm , $\hat{\text { o }} 1.07 \mathrm{~mm}$.
Myzopontiidae Sars, 1915
Myzopontius Giesbrecht, 1895a
Body cyclopoid. First antenna 12 -segmented. Second antenna 4 -segmented. Long siphon present. Mandible without palp. Legs I-4 with 3 -segmented rami.

Myzopontius pungens Giesbrecht, 1895 a
Host: Stichopus regalis (Cuvier).
Site: In washings.
Locality: Gulf of Naples (Giesbrecht, 1899).
Notes: Length of 90.85 -1.1 mm, o $0.8-0.88 \mathrm{~mm}$ (Giesbrecht, 1897). The relationship of the copepod to the holothurian is uncertain, according to Giesbrecht.

Nanaspididae Humes \& Cressey, 1959
(Originally spelled Nanaspidae, but corrected to Nanaspididae by Humes (1973)).
Allantogynus Changeux, 1958
Body cyclopoid, subcylindrical, with broad prosome and narrow urosome, both bisegmented. First antenna weakly 8 -segmented. Second antenna 5 -segmented, with fifth segment forming a truncate hook. Second maxilla prehensile with large claw. Leg I small, with both rami i-segmented. Leg 2 with 2 -segmented exopod and I -segmented endopod. Leg 3 uniramous with three segments. Leg 4 uniramous with two segments. Leg 5 apparently absent. δ unknown.

Allantogynus was first placed by its author "auprès des Cancerillidae Sars" but later transferred to a new family, the Allantogynidae. The similarity between Allantogynus and Nanaspis, however, noted in litt. by Bresciani, led Stock, Humes and Gooding (1963 b) to consider the name Allantogynidae a junior synonym of Nanaspididae.

Allantogynus delamarei Changeux, 1958
Host: Holothuria (Holothuria) tubulosa Gmelin
Site: Anterior region of host (pharynx, esophagus, stomach, gonad, coelomic fluid, brown bodies, tentacular ampullae; in coelomic epithelium and wall of pharynx; inner surface of pharynx) (Changeux, 1960).
Localities: Banyuls and Villefranche, France (Changeux, 1960).

Host: Holothuria (Holothuria) stellati Delle Chiaje.
Site: Anterior region of host (pharynx, esophagus, stomach, gonad, coelomic fluid, tentacular ampullae, surface of intestine, Polian vesicles, brown bodies) (Changeux, 1960).
Localities: Banyuls and Villefranche, France (Changeux, 1960).

Host: Holothuria (Lessonothuria) polii Delle Chiaje.
Site: Not recorded (only i q found in this host). Locality: Banyuls, France (Changeux, 1960). [Changeux, 1960, p. 107, reported in litt. this species having been found by Dr. J. H. Stock in Holothuria at Split and Dubrovnik, Jugoslavia].

Notes: Length of 90.70 mm , greatest width 0.35 mm. δ unknown.

Nanaspis Humes \& Cressey, 1959

Body minute, oval, flattened dorsoventrally. Articulation between head shield and thoracic shield. Urosome very small. First antenna in ô strongly prehensile. Second antenna 4-segmented, lacking an exopod but with terminal setose pad. Short oral cone. Mandible a minute blade. Second maxilla prehensile with strong claw. Leg I with I -segmented rami. Leg 2 with 3 -segmented exopod and either 2 - or 3 -segmented endopod. Legs 3 and 4 uniramous, lacking endopods; exopod of leg 3 either 2 - or 3 -segmented, exopod of leg 4 always 2-segmented. Leg 5 present or absent. Egg sac with two eggs.

Nanaspis boholensis n. sp.

Figs. 34a-h, 35a-j.
Type material. - ı 9 , $1 \hat{\sigma}$, and 1 copepodid from one holothurian, Stichopus variegatus Semper, in 7 m , Bohol Island, Philippines, $10^{\circ}{ }^{\circ} 5.88^{\prime} \mathrm{N}$, 124 ${ }^{\circ}{ }^{\circ} 8.6$ I $^{\prime} \mathrm{E}$, 18 August 1975. Holotype ㅇ, allotype, and 6 paratypic females deposited in the Zoölogisch Museum, Amsterdam; the remaining paratypes (dissected) and the copepodid in the collection of the author.
Female. - Body (fig. 34a) ovoid and flattened dorsoventrally. Length of shield-like prosome 0.47 mm ($0.45-0.47 \mathrm{~mm}$) and greatest width 0.32 mm ($0.32-0.33 \mathrm{~mm}$), based on 10 specimens in lactic acid. Posterior border of metasome truncate but slightly extended medially.

Urosome (figs. 34b, 34c) 2-segmented, with segment of leg 5 and genital segment fused and bearing a group of ventral spinules in posterior third. Genital area with two extremely small setae. Anal segment with fringe of lateral and posteroventral spinules and with minute spinules along posterior medial margin.

Egg sac (fig. 34a) approximately 220×105 $\mu \mathrm{m}$, containing two eggs.

Caudal ramus (fig. 34 b) $13 \times 14 \mu \mathrm{~m}$, bearing six naked setae, the longest $58 \mu \mathrm{~m}$, and few distal inner spinules.

Rostral area (fig. 34d) broad. First antenna 47 $\mu \mathrm{m}$ long in ventral view (fig. 34e) and apparently

Fig. 34. Nanaspis boholensis n. sp., female. a, dorsal (B); b, urosome, dorsal (G) ; c, urosome, ventral (G) ; d, cephalosome, ventral (E) ; e, first antenna, ventral (F) ; f,
first antenna, dorsal (F) ; g, second antenna, postero-outer (G) ; h, second maxilla, posterior (G).

Fig. 35. Nanaspis boholensis n. sp., female: a, maxilliped, anterior (G) ; b, leg a and intercoxal plate, anterior (F); c, leg 2 and intercoxal plate, anterior (G); d, abnormal right endopod of leg 2, anterior (G); e, leg 3, anterior
(G) ; f, leg 4, anterior (G). Male: g, dorsal (B) ; h, urosome, mostly ventral view but urosome recurved ventrally (G) ; i, rostral area, ventral (E) ; j, first antenna, ventral (F).

3-segmented, but in dorsal view (fig. 34f) showing sclerotized bands suggesting greater number of segments. Lengths of segments: 16,20 , and $8 \mu \mathrm{~m}$. Armature: 1,16 , and $7+2$ aesthetes. All setae smooth. Second antenna (fig. 34g), oral cone (fig. 34d), mandible (fig. 34d), first maxilla (fig. 34d), second maxilla (fig. 34h), maxilliped (fig. 35), and ventral area between and immediately behind maxillipeds (fig. 34d) similar to those of Nanaspis moluccana described below.

Legs i-4 (figs $35 \mathrm{~b}, 35 \mathrm{c}, 35 \mathrm{e}, 35 \mathrm{f}$) segmented as in N. moluccana and spine and setal formula as in that species except for second segment of endopod of leg 2 which is I, 4, instead of I, 3. Leg i with inner spinules on basis and distal spinules on both exopod and endopod. Seta on endopod delicately feathered. One female with extra seta on second segment of endopod of leg 2 (fig. 35d).

Leg 5 (fig. 34c) with minute segment 3×3 $\mu \mathrm{m}$, bearing two terminal setae $22 \mu \mathrm{~m}$ and II $\mu \mathrm{m}$, longer seta weakly feathered, and two slender spinules.

Leg 6 probably represented by two minute setae on the genital area (fig. 34b).

Color in living specimens unknown.
Male. - Body (fig. 35g) with anterior end of cephalosome truncate and posterior end of metasome rounded. Length 0.35 mm and greatest width 0.26 mm in lactic acid.

Urosome (fig. 35h) 2 -segmented, ornamented as in female except lacking minute spinules on anal segment medial to caudal ramus.

Caudal ramus (fig. 35 h) $11 \times$ io $\mu \mathrm{m}$, lacking spinules seen in female.

Rostral area (fig. 35i) narrow, with bases of first antenna nearly touching medially.

First antenna (fig. 35j) $78 \mu \mathrm{~m}$ long, apparently 5 -segmented and with armature $1,9,9,4$, and 5 +2 aesthetes.

Remaining appendages similar to those in female.

Spermatophore not seen.
Etymology. - The specific name boholensis alludes to Bohol Island where the specimens were found.
Remarks. - Only two species of Nanaspis have a 2 -segmented endopod in leg 2 with the formula
o-i; I, 4. These are Nanaspis mediterranea Stock \& Kleeton, 1963, and Nanaspis ninae Bresciani \& Lützen, 1962. Nanaspis boholensis differs from these, however, in having four setae on the exopod of leg I (instead of three) and in having the formula IV, I on the second segment of leg 4 (instead of III, 2).

Nanaspis exigua Stock, Humes \& Gooding, 1962 Host: Isostichopus badionotus (Selenka).
Site: Body surface.
Locality: Jamaica (Stock, Humes \& Gooding, 1962).

Notes: Length of $\$ 0.47 \mathrm{~mm}$, $\delta 0.4 \mathrm{~mm}$. Posterior outline of dorsal shield in q almost straight. Four setae on leg 1 exopod. Leg 2 endopod with o-r; o-r; I, 3. Leg 3 with I-o; I-r; III, 3. Leg 4 with I-o; IV, I. Leg 5 present. Length of 9 genital segment less than half its width.

Nanaspis manca Humes, 1973

Host: Thelenota ananas (Jaeger).
Site: In washings.
Locality: Eniwetok Atoll (Humes, 1973).
Notes: Length of $\$ 0.61 \mathrm{~mm}$, o 0.39 mm (not including urosome folded ventrally). Posterior margin of metasome indented medially and truncate on both sides. First antenna with five segments. Three setae on leg I exopod. Leg 2 exopod with I-o; I-o; II, 2; endopod with o-o; 2. Leg 3 with I-o; III, 2. Leg 4 with I-o; III; 2. Leg 5 absent.
 ananas, in 4 m , Poelau Marsegoe, western Ceram, $2^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}, 128^{\circ} \mathrm{O} 3^{\prime} 30^{\prime \prime} \mathrm{E}$, 15 May 1975. (N. pusilla and N. spinifera also occurred on this holothurian).

Nanaspis media Stock, Humes \& Gooding, ig 6
Host: Isostichopus badionotus (Selenka).
Site: Body surface.
Locality: Near La Parguera, Puerto Rico (Stock, Humes \& Gooding, 1962).
Notes: Length of $\$ 0.51 \mathrm{~mm}$, $\delta 0.44 \mathrm{~mm}$. Posterior outline of dorsal shield in 9 deeply sinuous. Four setae on leg I exopod. Leg 2 endopod with o-I; o-I; I, 3. Leg 3 with I-o; I-r; III, 3. Leg 4
with I-O; IV, I. Leg 5 present. Dactyl of $\widehat{\text { first }}$ antenna less than four times as long as wide.

Nanaspis mediterranea Stock \& Kleeton, 1963
Host: Stichopus regalis (Cuvier).
Site: In washings.
Locality: Banyuls, France (Stock \& Kleeton, 1963).

Notes: Length of $90.60 \mathrm{~mm}, \delta^{0} 0.49 \mathrm{~mm}$. Posterior outline of dorsal shield in q almost straight. not sinuous; in ot this outline concave. Three setae on leg I exopod. Leg 2 endopod with o-I; I, 4. Leg 3 with I-o; I-I; III, 3. Leg 4 with I-o; III, 2. Leg 5 present.

Nanaspis mixta Humes, 1975

Host: Holoturia (Microthele) nobilis (Selenka). Site: In washings.
Locality: Region of Nouméa, New Caledonia (Humes, 1975a).
Notes: Length of $\xlongequal[q]{ } 0.45 \mathrm{~mm}$, $\begin{gathered}\text { t } 0.37 \mathrm{~mm} \text { (not in- }\end{gathered}$ cluding urosome folded ventrally). Posterior outline of metasome in $\dot{+}$ truncate, in δ rounded. Four setae on leg 1 exopod. Leg 2 exopod with I-o; I-r; III, 3; endopod with o-i; o-I; I, 3. Leg 3 with I-O; I-r; III, 3. Leg 4 with I-o; III, 2. Leg 5 present.

Nanaspis moluccana n. sp.
Figs. 36a-k, 37a-m
Type material. - 37 아, 19 ô ô from one holothurian, Stichopus chloronotus Brandt, in 2 m , Karang Mie, east central Halmahera, Moluccas, $00^{\circ} 20^{\prime} 07^{\prime \prime} \mathrm{N}, 128^{\circ} 25^{\prime} 00^{\prime \prime} \mathrm{E}$, 19 May 1975. Holotype ㅇ, allotype, and 48 paratypes (32 아, i6 ồ ó) deposited in the Zoölogisch Museum, Amsterdam; the remaining paratypes (dissected) in the collection of the author.
Female. - Body (figs. 36a, 36b) ovoid and flattened dorsoventrally. Length of shield-like prosome (not including urosome, which is folded ventrally in specimens preserved in ethyl alcohol) 0.43 mm ($0.4 \mathrm{I}-0.44 \mathrm{~mm}$) and greatest width $0.3 \mathrm{I} \mathrm{mm} \mathrm{(} 0.30-$ 0.32 mm), based on io specimens in lactic acid. Prosome divided dorsally by a transverse suture into anterior cephalosome and posterior metasome
with slightly truncated posterior margin.
Urosome (figs. $36 \mathrm{c}, 36 \mathrm{~d}, 36 \mathrm{e}$) 2 -segmented, original segment of leg 5 and genital segment fused, this composite segment bearing ventrally posterior transverse row of spinules (fig. 36e). Genital area with minute seta $4 \mu \mathrm{~m}$ long (fig. 36 d). Anal segment bearing on each side group of slender spinules, and row of small spinules medial to caudal ramus.

Entire egg sac not seen, but one sac from which larvae had emerged showed spaces for two eggs as in many species of Nanaspis.

Caudal ramus (fig. 36f) minute, approximately $14 \times 14 \mu \mathrm{~m}$, bearing six naked setae, the longest $62 \mu \mathrm{~m}$, and few distal inner spinules.

Arrangement of appendages as in figure 36 b .
Rostral area weakly developed (fig. 36b). First antenna (fig. 36 g) $50 \mu \mathrm{~m}$ long and apparently 4^{-} segmented, though with same number of sclerotized sections of posterior margin as in Nanaspis mixta Humes, 1975. Surficial sutures of second segment absent on anterodorsal surface. Lengths of segments (measured along their posterior nonsetiferous margins): 9 ($14 \mu \mathrm{~m}$ along anterior margin), 21, 2, and $13 \mu \mathrm{~m}$ respectively. Armature: 1, 14, 2, and $7+2$ aesthetes. Second antenna (fig. 36h) 4 -segmented. First segment unornamented. Second segment with few slender spinules on anterior margin. Third segment with two groups of spinules on anteroventral surface (fig. $3^{6 i}$) and distal posterodorsal row of prominent spinules. Small fourth segment with very small seta and minutely setose pad with recurved tip.

Oral cone (fig. 36b) projecting ventrally. Mandible (fig. 36 j) small simple blade $\mathrm{I} 3 \mu \mathrm{~m}$. First maxilla (fig. 36 k) with inner branch having one barbed seta and outer branch bearing three smooth setae. Adjacent seta near base of second antenna large and spinulose. Second maxilla (fig. 37a) with large first segment bearing few inner spinules; claw $73 \mu \mathrm{~m}$ along axis and reflexed distally. Maxilliped (fig. 37 b) 5 -segmented and resembling that of Nanaspis mixta. Ventral area between and immediately behind maxillipeds with spinules as in figure 36 b .

Legs $\mathrm{I}-4$ (figs. $37 \mathrm{c}, 37 \mathrm{~d}, 37 \mathrm{e}, 37 \mathrm{f}$) segmented as in Nanaspis mixta, except for 2 -segmented endopod in leg 2. Spine and setal formula as follows

tenna, posterodorsal (F) ; i, two distal segments of second antenna, anteroventral (F); j, mandible, ventral (J); \mathbf{k}, first maxilla and adjacent seta, ventral (G).

Fig. 36. Nanaspis moluccana n. sp., female. a, dorsal (D); b , ventral (D) ; c, urosome, dorsal (G) ; d, urosome, lateral (G) ; e, urosome, ventral (G) ; f, caudal ramus, ventral (H) ; g, first antenna, posteroventral (F) ; h, second an-

Fig. 37. Nanaspis moluccana n. sp., female: a, second maxilla, posterior (G) ; b, maxilliped, anterior (G) ; c, leg I and intercoxal plate, anterior (F); d, leg 2 and intercoxal plate, anterior (G);e, leg 3, anterior (G); f, leg 4,
anterior (G) ; g, leg 5, lateral (H). Male: h, dorsal (D) ; i , urosome, ventral (G) ; j, urosome, dorsal (G); k, first antenna, dorso-outer (F) ; l, first antenna, ventro-inner (F) ; m, leg 5, lateral (H).
(Roman numerals indicating spines, Arabic numerals representing setae):

```
P1 protopod 1-o exp 4
    enp I
P2
    enp o-r; I, 3
P3 coxa o-o basis o-o exp I-o; I-r; III, 3
    enp absent
P4
    enp absent
```

Leg I (fig. 37c) with few spinules on protopod and all setae on rami smooth. Spines of legs 2-4 minutely barbed. Setae of legs 2 and 3 plumose, but seta of leg 4 less so, with shorter lateral hairs (fig. 37f).

Leg 5 (figs. 37 d , 37 g) with elongate free segment $18 \times 5.5 \mu \mathrm{~m}$, bearing distally two smooth unequal setae, longer seta $23 \mu \mathrm{~m}$, and few long slender spinules. Basis with small dorsal seta and two slender spinules.

Leg 6 probably represented by single small seta on genital area (fig. 36 d).

Living specimens in transmitted light transparent to slightly opaque, eye red.
Male. - Body (fig. 37h) ovoid and flattened dorsoventrally, with anterior margin of cephalosome slightly truncate and posterior margin of metasome rounded. Length of prosome (not including urosome, which is folded ventrally) 0.3 I mm ($0.30-0.32 \mathrm{~mm}$) and greatest width 0.25 mm ($0.24-0.25 \mathrm{~mm}$), based on to specimens in lactic acid.

Urosome (figs. 37i, 37j) 2-segmented, ornamented as in female except for lack of small spinules on anal segment medial to caudal ramus.
Caudal ramus (fig. 37i) $14 \times 9 \mu \mathrm{~m}$, a little more slender than in female and lacking slender distal spinules seen in that sex.

Rostral area as in female.
First antenna (figs. $37 \mathrm{k}, 37 \mathrm{l}$) 5 -segmented, fourth segment swollen and fifth segment abbreviated and somewhat clawlike. Formula for armature: $\mathrm{I}, 6,7,9$, and $6+2$ aesthetes.

Second antenna, oral cone, mandible, first maxilla, second maxilla, maxilliped, and legs I-4 as in female.

Leg 5 (fig. 37 m) minute, free segment $3.5 \times$
$3.5 \mu \mathrm{~m}$, bearing two unequal terminal setae, longer seta $21 \mu \mathrm{~m}$.

Leg 6 not identifiable.
Spermatophore not seen.
Etymology. - The specific name moluccana is formed from Moluccas and the Latin suffix -anus, signifying belonging or pertaining to.
Remarks. - In the 2 -segmented condition of the endopod of leg 2 with the formula o-I; I, 3 and in the formula of leg 4 (I-O; IV, I) Nanaspis moluccana resembles Nanaspis tonsa Humes \& Cressey, 1959, a species found on Stichopus chloronotus in Madagascar. The new species differs from N. tonsa, however, in having four setae on the exopod of leg I instead of 3 and in possessing the formula III, 3 on the third segment of leg 3 instead of II, 3 .

Nanaspis ninae Bresciani \& Lützen, 1962

Host: Parastichopus tremulus (Gunnerus).
Site: In washings.
Locality: Gullmar Fjord, Sweden (Bresciani \& Lützen, 1962).
Notes: Length of 90.90 mm , $\hat{0}$ o. $58-0.60 \mathrm{~mm}$. Posterior outline of dorsal shield in 9 nearly straight. Three setae on leg 1 exopod. Leg 2 endopod with O-I; I, 4. Leg 3 with I-O; I-I; III, 3. Leg 4 with I-O; III, 2. Leg 5 absent.
New record: I 9 from washings of 33 Parastichopus tremulus taken by epibenthic sled in 479-485 m , west of Ireland, R/V Chain Station 309, $52^{\circ} 2 \mathrm{I} . \mathrm{I}^{\prime} \mathrm{N}, 12^{\circ} \mathrm{O} 7.4^{\prime} \mathrm{W}, 16$ August 1972.

Nanaspis pollens Stock, Humes \& Gooding, iç? Host: Isostichopus badionotus (Selenka). Site: Body surface.
Localities: Jamaica, Bahamas (Stock, Humes \& Gooding, 1962).

Host: Holothuria (Thymioscyia) arenicola and Holothuria (Semperothuria) surinamensis (Ludwig) (mixed at the time of collection).
Site: Body surface.
Locality: Near La Parguera, Puerto Rico (Stock, Humes \& Gooding, 1962).
Notes: Length of 90.57 mm , $\delta 0.50 \mathrm{~mm}$. Posterior outline of dorsal shield in 9 deeply sinuous. Four setae on leg 1 exopod. Leg 2 endopod with
o-I; O-I; I, 3. Leg 3 with I-o; I-I; III, 3. Leg 4 with I-o; IV, I. Leg 5 present. Dactyl of δ first antenna more than six times as long as wide.

Nanaspis pusilla Humes, 1973
Host: Thelenota ananas (Jaeger).
Site: In washings.
Locality: Eniwetok Atoll (Humes, 1973).
Notes: Length of $\$ 0.37 \mathrm{~mm}$, $\delta 0.24 \mathrm{~mm}$. Posterior outline of metasome in 9 very slightly trilobed. Three setae on leg a exopod. Leg 2 exopod with I-O; I-O; II, 2; endopod with O-O; 2. Leg 3 with I-o; III, 2. Leg 4 with I-o; III, 2. Leg 5 absent.
New record: 408 우, 2 II $\begin{gathered}\text { ot } \\ \text { from one Thelenota }\end{gathered}$ ananas, in 4 m , Poelau Marsegoe, western Ceram, $2^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}, 128^{\circ} \mathrm{O} 3^{\prime} 30^{\prime \prime} \mathrm{E}, 15$ May 1975. (N. manca and N. spinifera also occurred on this holothurian.)

Nanaspis spinifera Humes, 1973

Host: Thelenota ananas (Jaeger).
Site: In washings.
Locality: Eniwetok Atoll (Humes, 1973).
Notes: Length of $\circ 0.47 \mathrm{~mm}, \delta 0.3 \mathrm{I} \mathrm{mm}$. Posterior outline of metasome in 9 slightly sinuous, rounded on both sides; in δ slightly indented. First antenna with five segments. Second maxilla with thornlike process on first segment. Three setae on leg 1 exopod. Leg 2 exopod with I-o; I-O; II, 2; endopod with o-0; 2. Leg 3 with I-o; III, 2. Leg 4 with I-o; III, 2. Leg 5 absent. New record: 479 앙, 343 ô δ from one Thelenota ananas, in 4 m , Poelau Marsegoe, western Ceram, $2^{\circ} 59^{\prime} 30^{\prime \prime} \mathrm{S}, \mathrm{I} 28^{\circ} \mathrm{O} 3^{\prime} 3^{\prime \prime} \mathrm{E}$, 15 May 1975. (N. manca and N. pusilla also occurred on this holothurian).

Nanaspis tonsa Humes \& Cressey, 1959

Host: Stichopus chloronotus Brandt.
Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (Humes \& Cressey, 1959).
New records (all from Stichopus chloronotus): 47 웅, i8 o δ from 4 hosts, in 0.5 m , Ambariobe, near Nosy Bé, Madagascar, 7 August 1963; 30 여, is $\delta \delta$ from i host, in 20 cm , intertidal pool, Ankify, near Nosy Bé, 22 July 1963; 2 아 from 8 hosts, in 10 cm , intertidal pool, Tany Kely, near

Nosy Bé, 9 July i963; 16 우우, 2I ô ơ from 2 hosts, in 2 m , Pte. Lokobe, Nosy Bé, 16 August 1960; 52 여, 39 ô ô, and 23 copepodids from I host, in I m, Pte. Ambarionaomby, Nosy Komba, near Nosy Bé, 18 July 1963; 7 오, 4 ô ô, and 2 copepodids from I host, in 15 cm , intertidal pool, Nosy N'Tangam, near Nosy Bé, 5 September 1963; I ô from I host, in I m, Pte. de Tafondro, Nosy Bé, 2 October 1963.

Host: Stichopus variegatus Semper

Site: Body surface.
Locality: Region of Nosy Bé, northwestern Madagascar (present paper).
New host records (both from Stichopus variegatus): 3 아, $2 \delta \delta$ from I host, in I m, west of Pte. de Tafondro, Nosy Bé, Madagascar, 19 October 1960; 36 우, 21 ô δ from I host, in Im , Nosy Iranja, southwest of Nosy Bé, 7 October 1960.

Notes: Length of $\uparrow 0.43 \mathrm{~mm}, \delta \widehat{o} .35 \mathrm{~mm}$. Three setae on leg I exopod. Leg 2 endopod with $\mathrm{O}-\mathrm{I}$; I, 3. Leg 3 with I-O; I-I; II, 3. Leg 4 with I-O; IV, i. Leg 5 present.

Nanaspis truncata Stock, Humes \& Gooding, I962
Host: Holothuria (Platyperona) parvula (Selenka).
Site: Body surface.
Locality: Near La Parguera, Puerto Rico (Stock, Humes \& Gooding, 1962).

Host: Holothuria (Thymioscyia) arenicola (Semper) and Holothuria (Semperothuria) surinamensis (Ludwig) (mixed at time of collection).
Site: Body surface.
Locality: Near La Parguera, Puerto Rico (Stock, Humes \& Gooding, 1962).
Notes: Length of 90.48 mm , $\delta 0.40 \mathrm{~mm}$. Posterior outline of dorsal shield in Y truncate and almost straight. Four setae on leg i exopod. Leg 2 endopod with $\mathrm{O}-\mathrm{I}$; $\mathrm{O}-\mathrm{I} ; \mathrm{I}, 3$. Leg 3 with I-O; I-r; III, 3. Leg 4 with I-o; IV, i. Leg 5 present.

Key to species of Nanaspis
I. Leg 2 endopod 2 -segmented 2

Leg 2 endopod 3 -segmented
9
2. Leg 2 endopod with O -0; 2 3
Leg 2 endopod with o-I; I, 3 or o-I; I, 4 5
3. Leg 3 with saddle-shaped sclerotization (inter-coxal plate?) between coxae4
Leg 3 lacking such sclerotization ... N. manca
4. Sclerotized lobes on each side of female geni-tal segment with three small marginal teeth;seta on endopod of leg a located terminally
N. spinifera
Sclerotized lobes on each side of female geni-tal segment with smooth margin; seta on en-dopod of leg i located subterminally
N. pusilla
5. Leg 2 endopod with o-I; I, 3 6
Leg 2 endopod with o-r; I, 4 7
6. Leg 3 with third segment having formula II,3 ... N. tonsaLeg 3 with third segment having formula III,3N. moluccana
7. With four setae on exopod of leg I and se- cond segment of endopod of leg 4 with IV,IN. boholensis
With three setae on exopod of leg I and se-cond segment of endopod of leg 4 with III,28
8. Length of female up to 0.90 mm , male 0.58 -0.60 mm ; prosomal shield in male roundedanteriorly and posteriorly N. ninaeLength of female $0.57^{-0} .63 \mathrm{~mm}$, male 0.47^{-}0.52 mm ; prosomal shield in male with con-cave posterior borderN. mediterranea
9. Leg 4 with second segment having formula III, 2 N. mixta
Leg 4 with second segment having formulaIV, 1ı
ro. Posterior outline of dorsal shield in femaledeeply sinuous, fixed finger-like process onchela of male first antenna slenderII
Posterior outline of dorsal shield in femalealmost straight; fixed finger-like process onchela of male first antenna stout12
ir. Female body more than 0.56 mm in length;dactyl of male first antenna more than sixtimes as long as wideN. pollens
Female body less than 0.53 mm in length;dactyl of male first antenna less than fourtimes as long as wideN. media
12. Length of female genital segment more than
$3 / 5$ width; both aesthete-seta groups on dactyl of male first antenna in proximal half of segment N. truncata Length of female genital segment less than half width; one aesthete-seta group on dactyl of male first antenna in distal half of segment N. exigua

KEY TO THE GENERA OF COPEPODS ASSOCIATED WITH Holothuroidea
(based on $9 \circ$ of species included in this review)
r. Body distinctly segmented; endopod of leg I often prehensile; segment of leg 5 and genital segment firmly joined ... Harpacticoida ... 2 Body segmented, or transformed without external segmentation; endopod of leg i not presensile; segment of leg 5 and genital segment not firmly joined ... Cyclopoida ... 4
2. Body pyriform, prosome gibbous; color often bright red

Metis
Body not pyriform, prosome depressed or flattened; color otherwise 3
3. Prosome flattened, much broader than urosome; first antenna 9 -segmented; first segment of endopod of leg 1 massive, following two segments small . Sacodiscus Prosome depressed, only a little wider than urosome; first antenna 8 -segmented; first segment of endopod of leg i not massive, second segment elongate Tisbe
4. Genital openings midventral; mandible with three palplike setae Namakosiramia Genital openings dorsal or lateral; mandible lacking palplike setae 5
5. Mandible a stylet; second maxilla and maxilliped subchelate; labrum and metastomal area produced to form a cone or siphon ... Siphonostoma .6 Mandible not styliform; second maxilla and maxilliped not subchelate; lacking cone or siphon Poecilostoma iо
6. External body segmentation reduced or lacking; first antenna with at most eight segments; second antenna without an exopod... 7 External body segmentation distinct; first antenna with 12 or more segments; second antenna with a small one-segmented exopod ... 8
7. Body minute, oval, flattened dorsoventrally, and shieldlike, with articulation between head shield and thoracic shield; urosome very small Nanaspis Body subcylindrical, globular, with both prosome and urosome bisegmented; prosome twice as wide as urosome Allantogynus
8. Long siphon present; leg 5 with free seg-
ment .. 9 Short oral cone present, but no siphon; leg 5 without free segment Brychiopontius
9. First antenna 20 -segmented; mandible with palp

Asterocheres First antenna 12 -segmented; mandible without palp

Myzopontius
io. Body large, highly transformed, length 20-40 mm ; legs 4 and 5 absent; lacking mandible and first maxilla in adult Cucumaricola Body small, less than 5 mm , cyclopiform or modified; legs 4 and 5 present; mandible and first maxilla present II
ri. Leg 5 without a free segment
Pseudanthessius Leg 5 with a free segment (except a short papilla in Synapticola)

12
12. Free segment of leg 5 with four setae; first segment of first antenna armed with 2 or 3 strong clawlike processes Synaptiphilus Free segment of leg 5 with two setae; first segment of first antenna without such processes13
13. Body elongate and moderately tumid, modified, without external segmentation; legs I-4 biramous with I-segmented rami

Gomphopodarion
Body cyclopiform, sometimes elongate and moderately transformed; externally segmented; legs I-4 with all rami at least 2 -segmented 14
14. Legs 1-4 with 3 -segmented rami except for 2 -segmented endopod in leg 4 15 Legs i-4 with rami segmented otherwise ... I7
15. Second antenna 3 -segmented with one terminal claw; leg 4 endopod with o-I; II, I
... Stellicola
Second antenna 4 -segmented; leg 4 endopod with O-I; II г
16. Second antenna with two terminal claws

Metaxymolgus

Second antenna with a clawlike element on third segment and four claws on fourth segment

Zygomolgus
17. Legs I-3 with 3 -segmented exopods and 2segmented endopods; leg 4 with both rami 3^{-} segmented

Calypsina
Legs I-4 with rami segmented otherwise ... i8
18. Legs $1-4$ with 3 -segmented exopods and 2 segmented endopods

19
Legs I-4 with rami segmented otherwise ... 20
19. Ventral keel on genital segment; leg 4 endopod with o-I; I, III, I, I or o-I; I, III, I

Calypsarion
Without ventral keel on genital segment; leg 4 endopod with o-I; III Synapticola
20. Second antenna 4 -segmented with one claw on fourth segment 2I Second antenna 4 -segmented with one claw on
third segment 22
2I. Caudal ramus with two median terminal setae vestigial
. Diogenella Caudal ramus with two median terminal setae normally developed Diogenidium
22. Leg 4 endopod with o-I; I, II, II, I
... Caribulus
Leg 4 endopod otherwise 23
23. Long digitiform process on distal outer corner of basis of legs 2 and $3 \ldots . . .$. . Chauliolobion
Basis of legs 2 and 3 lacking such a process
24
24. Leg 4 endopod with o-I; o-I; I, II, II

Scambicornus
Leg 4 endopod otherwise 25
25. With unusually broad cephalosome; leg 4 endopod with $\mathrm{O}-\mathrm{I}$; O-I; I, I, I, I, I or o-i ; o-if I, I, I, I Lecanurius Cephalosome not much wider than metasome; leg 4 endopod with o-I; O-I; II, I

Lichothuria

ASPECTS OF COPEPOD-HOLOTHURIAN ASSOCIATIONS

Body form

In most genera of copepods living with holothurians the body, segmented and with obvious appendages, is easily recognized as copepodan. This is
particularly true among external species. A few copepods living internally, however, have modified or transformed bodies. The female of Gomphopodarion is elongate and subcylindrical without external segmentation. Legs I-4 are biramous and small, with I -segmented rami (Humes, 1974). The female of Allantogynus is globular, with reduced segmentation. Legs $1-4$ are small, $\mathrm{I}+2$ biramous, $3+4$ uniramous (Changeux, 1960). Males of both these genera are unknown.

The greatest transformation of the body is seen in Cucumaricola where strong sexual dimorphism occurs in the adults, with the female being 6-8 times as long ($20-40 \mathrm{~mm}$) as the male ($0.51-5.0$ mm). Mature males retain trunk segmentation, have three pairs of small trunk appendages, and possess long caudal rami more than half the body length. Mature females have a bizarre appearance, possess three pairs of boot-shaped trunk appendages, and have relatively short caudal rami only one-sixth of the body length (Paterson, 1958).

Location on host

Copepods living on the integument of holothurians can sometimes be seen with the unaided eye, as Humes \& Cressey (1961) reported for Scambicornus idoneus on the black holothurian Holothuria atra. Tisbe holothuriae can be seen swarming among the podia and dorsal papillae of Holothuria tubulosa and H. stellati (Changeux, 1960). Scambicornus hamatus was found clinging to the tentacles of Neothyonidium (Heegaard, 1944). The exact location of many external species remains unknown. The large size and contractility of the host often make microscopic examination of the integument difficult. Therefore, the general practice in the field has been to recover the copepods by washing intact hosts in a weak solution of ethyl alcohol in sea water.

The exact location in the host is known for only a few internal copepods. Allantogynus delamarei lives in the anterior part of the body cavity of Holothuria tubulosa and H. stellati, particularly in the vicinity of the pharynx. Female Allantogynus placed in intestinal juice of the holothurian host died within io minutes, but controls in sea water with daily changes lived up to 14 days. This toxic action of the digestive juice prevents the copepods
from entering the digestive tract beyond the posterior limit of the stomach. By penetrating the pharynx the copepod escapes any toxic action (Changeux, 1960).

Scambicornus brachysetosus has been found in the esophagus of Holothuria atra (see above). Calypsina changeuxi, which lives permanently in the esophagus of H. tubulosa and H. stellati, owes its maintenance at this level to a very particular stereotropism which rivets it solidly to the wall by the head appendages (Changeux, 1960).

Certain copepods can live both externally on the anterior integument and tentacles or in the anterior part of the digestive tract, as in the case of Synaptiphilus on Leptosynapta (Bocquet \& Stock, 1957).

Cucumaricola notabilis occurs in galls or cysts, probably formed by the host, Cucumaricola frauenfeldi. Small cysts are attached to the tissues between the circumpharyngeal ossicles or to the inner wall of the cloaca near the respiratory trees. Larger cysts lie detached in the coelom. Normally each cyst contains a pair of copepods (Paterson, 1958).

Egg number

The number of eggs produced in different species varies widely. Generally the egg sacs of external species contain more eggs (from about 75 to more than 100) than those of internal species. Scambicornus idoneus, for example, a copepod living on the body surface of Holothuria atra, carries about 75 eggs in each sac. Humes \& Cressey (196r) recovered 45 I i 9 of this species from seven hosts. These females could theoretically bear 67,650 eggs if each female carried two egg sacs. On the other hand, females of the genus Nanaspis, also an external species, have only two eggs in each sac. Nanaspis, however, often occurs in large numbers. For example, 15029% of three species were found on one host Thelenota (see above). Their theoretical egg burden would be 6,008 . Since not all females are ovigerous at a given time, these theoretical numbers should be reduced. The impression remains, however, that the potential for egg production in these external copepods is large.

Copepods living inside the host tend to have fewer eggs (from r to about 32) in each egg sac.

Thus Chauliolobion imparile has 1-3 eggs, Calypsarion leprum 3, Diogenidium deforme 6, Diogenella seticauda 12, Lichothuria mandibularis 923, and Lecanurius planifrontalis about 32.

Among the internal forms Allantogynus delama$r e i$ is exceptional in respect to the nature of the egg sac and egg number. In this species the sac becomes progressively larger and filled with numerous eggs until it drops free into the body cavity of the holothurian (Changeux, 1960).

The reproductive capability of copepods found in large numbers on common holothurians of coral reefs is potentially very high. Holothuria atra is often very abundant in shallow water on reefs and in lagoons or tidal flats behind reefs. Its maximum density at Nosy Bé in northwestern Madagascar is estimated at one for every $25 \mathrm{~m}^{2}$, or 400 holothurians per hectare. At the egg carrying capacity of Scambicornus idoneus mentioned above, the theoretical number of eggs at a given time would be $3,800,000$ per hectare. Various factors such as variations in the density of the hosts and their degree of infestation, and changes in the number of simultaneously ovigerous females would no doubt intervene to affect the reproductive capability as estimated by egg number.

It has been suggested that large numbers of eggs in the egg sacs might be related to: the host being sparsely distributed, somewhat inaccessible, or not obviously atractive from a distance; the host being highly mobile; or the environment of the host being inimical to successful infestation, e.g., swift currents, wave beaten shores, or exposure during low tides (Gotto, 1962). In Caligus, parasitic on fishes, it has been suggested that the shape of the egg strings may be determined by the movements of the female and by pressure (currents) of the water related to the movements of the fish host (Heegaard, 1959). It is difficult to understand how environmental forces may influence egg number or the shape of the egg sacs. Water flow seems not to be important in the case of certain holothurian associates. Scambicornus idoneus on Holothuria scabra, a holothurian usually partly or almost entirely buried in sand, has numerous eggs (about 75) in each sac, as many as Scambicornus modestus on Stichopus chloronotus, a host living entirely exposed. The great difference in egg num-
ber between Nanaspis and Scambicornus, both external associates, is also difficult to explain on environmental grounds.

Development

Investigations of the development and life histories of copepods living with sea cucumbers has lagged far behind morphological and taxonomic studies of adult copepods. Reasons for this are several, among them the difficulties of maintenance of the developmental stages in the laboratory (which may require the maintenance of the host also) and the lack of laboratory facilities in many tropical areas such as the Indo-Pacific where copepod associates of holothurians are particularly abundant.

In the case of Tisbe holothuriae on Holothuria tubulosa and H. stellati ovigerous and nonovigerous females, males, nauplii, and copepodids occur on the integument of the hosts, and in all probability the complete life cycle of the copepod is carried out in association with the holothurian (Changeux, 1960). The association is not obligatory for development, however, since T. holothuriae may complete its development free among algae or in culture in the laboratory (VolkmannRocco, 1971).

Allantogynus delamarei in Holothuria tubulosa and H. stellati deposits eggs in a sac which envelopes the female. Changeux (1960) followed development in vitro, identifying a naplius stage and two metanauplius stages followed by a first copepodid larva. Further copepodids were not obtained.

The development of Cucumaricola notabilis from Cucumaria frauenfeldi has been studied by Paterson (1958). The number of naupliar ecdyses was not established, since most nauplii molted only once and failed to develop further. Since a copepodid was seen with four telescoped naupliar exuviae still attached, it seems probable that several naupliar stages precede the copepodid. The first copepodid, which probably emerges from the host for a brief free existence, is an actively swimming form that within 24 hours or less settles to the bottom and molts to a second copepodid. This is a quiescent stage during which transformation to a juvenile parasitic form occurs. The minute vermiform stage emerges from the ruptured copepodid skin and begins to crawl on the bottom with leech-
like movements. Cultured juveniles and juveniles found in the host are so similar that one may suppose that at this stage they seek out and enter the host.

In the search for copepods associated with the holothurians late copepodid stages are sometimes found along with adults, both in external forms such as Caribulus, Nanaspis, and Scambicornus, and in internal forms such as Chauliolobion, Diogenella, Lichothuria, and others. Nauplii are not evident in the hosts, however. Probably an early copepodid stage, perhaps the second copepodid as Dudley (1966) has shown likely in notodelphyid copepods of ascidians, is the infective form that reaches the host.

Incidence of copepod-holothurian associations

Seventy-seven species of copepods are known as associates of holothurians. They are distributed among six families and 18 genera of the Holothuroidea (Table I). The majority of the associations occur in the Holothuriidae, with 55 copepods involved: Actinopyga with 17 species, Bohadschia 7, Holothuria 29, and Labidodemas 2. In the Stichopodidae 22 associations are known: Isostichopus 5, Parastichopus 1, Stichopus 10, and Thelenota 6. The Synaptidae have 12 associations: Labidoplax 3, Leptosynapta 2, Opheodesoma 4, Polyplectana 1, and Synapta 2. The remaining three families show only a few associations. In the Cucumariidae there are three associations: Cucumaria I and Ocnus 2. In the Phyllophoridae two associations occur: Neothyonidium I and Ohshimella I. Finally in the Deimatidae two associations are known, both in the genus Oneirophanta. If the numbers of associations in each family are added, we arrive at a total of 96 , a figure larger than the number of species of copepods involved. This is accounted for by the fact that several species occur with more than one host genus. In fact, in a few cases a copepod may be associated with hosts in more than one family, as Caribulus sculptus, Scambicornus batiolatus, and Nanaspis pollens on both Holothuriidae and Stichopodidae; Scambicornus subtilis on both Holothuriidae and Synaptidae; Scambicornus tuberatus with hosts in three families, Holothuriidae, Stichopodidae, and Synaptidae; and Scambicornus
modestus with hosts in three families, Holothuriidae, Stichopodidae, and Phyllophoridae (Table 2). The six species of copepods which associate with members of more than one family of holothurians are external forms. In such relatively unmodified species a lesser degree of host specificity might be expected than internal more hightly modified species. Internal forms tend to parasitize members of one holothurian family, the Holothuriidae, or even one genus (Table 3).

Certain holothurians harbor several species of copepods (Table 4). The greatest number of copepod associates occurs with Holothuria atra (ir species, 8 of them external, 3 internal), followed by Actinopyga echinites with 8 species (6 external, 2 internal). These figures represent a compilation of associations over the entire range of the hosts where the holothurians have been examined. Such extensive associations do not occur in any one locality, however. For H. atra the numbers of associated copepods are as follows: Seychelles 2 spe38).

Table I. Number of copepod associates and their host families and genera.

	number of species of copepods	total
Holothuriidae		55
Actinopyga	17	
Bohadschia	7	
Holothuria	29	
Labidodemas	2	
Stichopodidae		22
Isostichopus	5	
Parastichopus	1	
Stichopus	Iо	
Thelenota	6	
Synaptidae		12
Labidoplax	3	
Leptosynapta	2	
Opheodesoma	4	
Polyplectana	I	
Synapta	2	
Cucumariidae		3
Cucumaria	1	
Ocnus	2	
Phyllophoridae		2
Neothyonidium	1	
Ohshimella	1	
Deimatidae		2
Oneirophanta	2	
		96

Fig. 38. Number of species of copepods associated with Holothuria atra in the Gulf of Aqaba, Seychelles, Mada-
gascar, India, the Moluccas, Eniwetok Atoll, and New Caledonia.

Table 2. Distribution of external species having more than one host among Holothuroidea.

[^1]Table 3. Distribution of internal species having more than one host among Holothuroidea.

copepod	number of species serving as host in varidus genera		
	Holothuriidae	Stichopodidae	Synaptidae
Allantogynus delamarei	3 Holothuria		
Calypsarion leprum	3 Actinopyga		
Chauliolobion bulbosum	2 Actinopyga		
Diogenella seticauda	3 Holothuria		
Diogenella spinicauda	1 Holothuria I Actinopyga		
Diogenidium deforme	3 Holothuria		
Diogenidium nasutum	2 Holothuria I Actinopyga		
Lecanurius kossmannianus	2 Actinopyga		
Lichothuria mandibularis	4 Holothuria		
Synapticola teres			I Polyplectana I Synapta

Table 4. Holothurians having three or more copepod associates.

Number of species of copepod associates	Holothuriidae	Stichopodidae	Synaptidae
II	Holothuria atra Actinopyg e ehinites		
8	Actinopyga agassizii Holothuria arenicola Actinopya lecanora Holothuria mexicana Actinopyga miliaris Bohadschia argus Holothuria edulis Holothuria nobilis Holothuria surinamensis Holothuria tubulosa	Thelenota ananas Isostichopus badionotus	Stichopus variegatus
4	Stichopus chloronotus	Stichopus regalis	Opheodesoma grisea
			Labidoplax digitata

cies, Madagascar 3, Gulf of Aqaba r, India 1 , Moluccas 4, New Caledonia 4, and Eniwetok I (fig.

Approximately half of the copepod associates (47 out of 77) are known from only one species of holothurian. Sixteen of these copepods are internal species. Many more collections from widespread localities are needed to determine whether or not the apparent restriction to one host is real.

Susceptibility of holothurians to copepod associations

The number of species that may occur with a single holothurian (Table 5) is not large. There may be as many as five species of copepods with Thelenota ananas, three with Holothuria atra, Stichopus chloronotus, Bohadschia argus, and Actinopyga echinites, and two with Holothuria edulis and Holothuria fuscocinerea. On the other hand, cer-
tain holothurians, for example, Bohadschia graeffei, appear to have only one copepod associate.

Degree of infestation

The number of copepods on individual holothurians varies widely. Determination of the numbers of associates is affected by the degree of refinement of techniques for recovering the copepods, particularly in the case of internal forms where often much mucus and debris interfere with the search. The number of copepods on the body surface may be very large. Washings of one Thelenota ananas at Eniwetok yielded 847 adults and 206 copepodids representing three species of Na naspis (Humes, 1973). On a single Thelenota ananas at Poelau Marsegoe in western Ceram 2,657 specimens of the same three species of Na naspis were found (see above). From one Synapta

Table 5. Number of species associated with individually examined holothurians.

holothurian	locality	copepods
one Thelenota ananas	Moluceas	Scambicornus batiolatus Nanaspis manca Nanaspis spinifera Nanaspis pusilla Chauliolobion tectuliferum
four Holothuria atra	Moluccas	each with Scambicornus batiolatus Scambicornus disparilis Scambicornus idoneus
one Stichopus chloronotus	Moluccas	Scambicornus modestus Chauliolobion forcipatum Nanaspis moluccana
one Bohadschia argus	Moluccas	Scambicornus tylotus Scambicornus tuberatus Chauliolobion imparile
one Actinopyga echinites	New Caledonia	Scambicornus calcaratus Chauliolobion bulbosum Lecanurius planifrontalis
three Holothuria edulis	New Caledonia	each with Scambicornus subtilis Scambicornus sewelli
three Holothuria fuscocinerea	New Caledonia	each with Scambicornus subtilis Scambicornus sewelli
nine Bohadschia graeffei one Labidodemas semperianum	5 in Moluccas, 4 in Madagascar Moluccas	each with Scambicormus lobulatus Scambicornus sentifer

Table 6. Comparison of the incidence of external and internal associates of holothurians.

copepod	number of collections from pooled hosts	number of hosts examined	number of copepods collected	number of copepods per host
External species				
Caribulus sculptus	21	93	414	4.45
Scambicornus calcaratus	16	56	899	16.10
Scambicornus campanulipes	24	556	1634	2.94
Scambicornus idoneus	22	330	1246	3.78
Scambicornus lobulatus	13	54	581	10.76
Scambicornus modestus	26	86	1000	11.63
Scambicornus poculiferus	8	10	IIII	111.10
Scambicornus sewelli	16	128	874	6.83
Scambicornus subtilis	21	142	158	1.11
Scambicornus tuberatus	14	28	1124	40.14
Nanaspis media	6	36	342	9.50
	187	1519	9383	av. $=19.85$
Internal species				
Calypsarion leprum	19	746	91	0.12
Chauliolobion bulbosum	6	73	32	0.44
Diogenella spinicauda	I3	201	102	0.51
Diogenidium deforme	5	111	12	0.11
Diogenidium nasutum	6	109	26	0.24
Lecanurius kossmannianus	10	219	21	0.10
Lichothuria mandibularis	19	830	355	0.42
	78	2289	639	$\mathrm{av} .=0.28$

maculata at Nosy Bé, Madagascar, 467 adults and 122 copepodids of Scambicornus poculiferus were recovered (Humes, 1967). In general, however, external species are more abundant than those living internally. In a selected group of II external species and 7 internal species where at least 5 collections were made the average number of external copepods was 19.85 and that of internal copepods 0.28 (Table 6).

GEOGRAPHICAL DISTRIBUTION

The information upon which concepts of geographical distribution of copepod associates of holothurians may be founded remains scanty. Since associated copepods are believed to have some degree of specificity for their holothurian hosts, the copepods might be expected to be restricted to the range of the host. This does not preclude, however, the replacement of one copepod by another over that range. Along the same line, two related species of holothurians with slightly overlapping geographical ranges might harbor the same species of copepod, thereby extending the range of the copepod.

Scambicornus is a relatively large genus containing i9 species living with holothurians. Its species occur widely and abundantly on holothurians in the Indo-Pacific (fig. 39). One species, Scambi-
cornus petiti, is an inhabitant of the Mediterranean Sea, where it lives on Stichopus regalis. The presence of an essentially tropical genus in the Mediterranean is not so surprising considering the history of the Mediterranean and its origin from the Tethys Sea in the Tertiary. Scambicornus does not occur in the West Indies. There it is replaced by Caribulus, a genus where speciation has been slow, with only one certain species, Caribulus sculptus, and possibly a second species known.

Nanaspis is also a fairly large genus with I3 species on holothurians. Its species occur in the Indo-Pacific, Europe, and the West Indies (fig. 40). The four West Indian species, however, may represent a separate genus, as suggested by Stock, Humes \& Gooding (1962). The four species have two features that seem to unite them: a 3 -segmented endopod in leg 2 and the formula I-o; IV, I in leg 4. If this separation is supported, the remaining nine species show a distributional pattern similar to that of Scambicornus.

Collections of other genera of copepods from holothurians are too fragmentary to portray a satisfactory distributional picture.

Copepod associates are unknown from holothurians in many areas of the world (South America, Africa except Cape Town, mainland Asia, New Zealand, Greenland and the Arctic, and the Ant-

Fig. 39. Distribution of Scambicornus, with numbers of species found in the Mediterranean Sea, Madagascar; Sey-
chelles, Mauritius, India, Japan, Philippines, Eniwetok Atoll, Moluccas, Australia, and New Caledonia.

Fig. 40. Distribution of Nanaspis. $\mathbf{1}=$ exigua, $2=$ boholensis, $3=$ manca, $4=$ media, $5=$ mediterranea, $6=$
mixta, $7=$ moluccana, $8=$ ninae, $9=$ pollens, $10=$ pusilla, $11=$ spinifera, $12=$ tonsa, $13=$ truncata.
arctic). Most of the collections have been from shallow-water Holothuroidea, with the majority of these hosts coming from the tropical intertidal and subtidal. Very few deep-water holothurians have been examined. Nanaspis ninae has been found on Parastichopus tremulus in 479-485 m, and Brychiopontius falcatus and Gomphopodarion byssoicum have been collected from Oneirophanta mutabilis in 4426-4435 m, all from a point west of Ireland.

COPEPODS AND THEIR HOLOTHURIAN HOSTS

Abacola holothuriae Edwards - see Metis Allantogynus delamarei Changeux

Holothuria (Lessonothuria) polii Holothuria (Holothuria) stellati Holothuria (Holothuria) tubulosa

Asterocheres boecki (Brady)
Holothuria (Panningothuria) forskali

Brychiopontius falcatus Humes

Oneirophanta mutabilis

Calypsarion bilobatum Humes

probably Holothuria atra

Calypsarion carinatum (Stock)

Stichopus monotuberculatus

Calypsarion leprum Humes \& Ho

Actinopyga lecanora

Actinopyga mauritiana
Actinopyga miliaris

Calypsarion sentosum Humes \& Ho

Bohadschia marmorata

Calypsina changeuxi (Stock \& Kleeton)

Holothuria (Holothuria) stellati
Holothuria (Holothuria) tubulosa
Caribulus sculptus (Humes)
Actinopyga agassizii
Holothuria (Halodeima) grisea
Holothuria (Halodeima) mexicana Isostichopus badionotus

Caribulus sp.
Actinopyga agassizii
Holothuria (Halodeima) mexicana
Isostichopus badionotus
Chauliolobion bulbosum Humes
Actinopyga echinites
Actinopyga palauensis

Chauliolobion foliaceum (Ummerkutty)
Holothuria atra
Chauliolobion forcipatum Humes
Stichopus chloronotus
Chauliolobion halodeimatis Humes
Holothuria (Halodeima) atra
Chauliolobion imparile Humes
Bohadschia argus
Chauliolobion tectuliferum Humes
Thelenota ananas
Cucumaricola notabilis Paterson
Cucumaria frauenfeldi
Diogenella deichmannae Humes \& Ho
Holothuria (Thymioscyia) arenicola
Diogenella impar Humes \& Ho
Holothuria (Thymioscyia) arenicola
Diogenella seticauda Stock
Holothuria (Semperothuria) surinamensis Holothuria (Thymioscyia) arenicola Holothuria (Thymioscyia) impatiens

Diogenella spinicauda Stock
Actinopyga agassizii
Holothuria (Halodeima) mexicana
Diogenidium deforme Stock
Holothuria (Halodeima) mexicana Holothuria (Selenkothuria) glaberrima Holothuria (Thymioscyia) arenicola

Diogenidium nasutum Edwards
Actinopyga agassizii
Holothuria (Halodeima) grisea
Holothuria (Halodeima) mexicana
Diogenidium spinulosum Stock
Isostichopus badionotus
Diogenidium tectum Humes \& Ho
Actinopyga agassizii
Gomphopodarion byssoicum Humes
Oneirophanta mutabilis
Lecanurius intestinalis Kossmann
Actinopyga lecanora

Lecanurius kossmannianus Humes

Actinopyga lecanora
Actinopyga miliaris

Lecanurius planifrontalis Humes

Actinopyga echinites
Actinopyga miliaris

Lecanurius sp.

Synapta maculata
Lichothuria mandibularis Stock
Holothuria (Cystipus) fuscopunctata
Holothuria (Halodeima) atra
Holothuria (Metriatyla) scabra
Holothuria (Microthele) nobilis
Metaxymolgus cuspis (Humes)
holothurians
Metis holothuriae (Edwards)
Actinopyga agassizii
Myzopontius pungens Giesbrecht
Stichopus regalis
Namakosiramia californiensis Ho \& Perkins
Stichopus parvimensis
Nanaspis boholensis Humes
Stichopus variegatus
Nanaspis exigua Stock, Humes \& Gooding
Isostichopus badionotus
Nanaspis manca Humes
Thelenota ananas
Nanaspis media Stock, Humes \& Gooding
Isostichopus badionotus
Nanaspis mediterranea Stock \& Kleeton
Stichopus regalis
Nanaspis mixta Humes
Holothuria (Microthele) nobilis
Nanaspis moluccana Humes
Stichopus chloronotus
Nanaspis ninae Bresciani \& Lützen
Parastichopus tremulus

Nanaspis pollens Stock, Humes \& Gooding
Holothuria (Semperothuria) surinamensis
Holothuria (Thymioscyia) arenicola
Isostichopus badionotus

Nanaspis pusilla Humes

Thelenota ananas
Nanaspis spinifera Humes
Thelenota ananas
Nanaspis tonsa Humes \& Cressey
Stichopus chloronotus
Stichopus variegatus
Nanaspis truncata Stock, Humes \& Gooding
Holothuria (Platyperona) parvula
Holothuria (Semperothuria) surinamensis
Holothuria (Thymioscyia) arenicola

Preherrmannella - see Scambicornus
Preherrmannella changeuxi Stock \& Kleeton see Calypsina
Pseudanthessius deficiens Stock, Humes \& Gooding
Holothuria (Halodeima) mexicana
Pseudanthessius pectinifer Stock, Humes \& Gooding
Actinopyga agassizii
Sacodiscus humesi Stock
Holothuria (Holothuria) tubulosa
Scambicornus batiolatus Humes
Holothuria (Halodeima) atra
Thelenota ananas
Scambicornus brachysetosus Reddiah
Holothuria (Halodeima) atra
Scambicornus calcaratus Humes
Actinopyga echinites
Actinopyga lecanora
Actinopyga miliaris
Actinopyga palauensis
Actinopyga plebeja
Actinopyga serratidens

Scambicornus campanulipes (Humes \& Cressey)

Actinopyga echinites
Actinopyga lecanora
Actinopyga mauritiana

Actinopyga miliaris
Actinopyga plebeja
Actinopyga sp.
Holothuria (Halodeima) atra
Scambicornus carinatus Stock - see Calypsarion
Scambicornus changeuxi (Stock \& Kleeton) see Calypsina
Scambicornus disparilis Humes
Holothuria (Halodeima) atra
Scambicornus hamatus Heegaard
Neothyonidium hawaiiense (Fisher)
Scambicornus idoneus (Humes \& Cressey)
Actinopyga echinites
Bohadschia argus
Holothuria (Halodeima) atra
Holothuria (Halodeima) edulis
Holothuria (Mertensiothuria) leucospilota
Holothuria (Metriatyla) scabra
Holothuria (Microthele) nobilis
Scambicornus lobulatus Humes
Actinopyga echinites
Bohadschia graeffei Humes
Scambicornus modestus (Humes \& Cressey)
Bohadschia draschi
Holothuria (Halodeima) atra
Holothuria (Lessonothuria) pardalis
Holothuria (Platyperona) difficilis
Holothuria (Thymioscyia) impatiens
Ohshimella ehrenbergi
Stichopus chloronotus
Stichopus horrens
Stichopus monotuberculatus
Stichopus variegatus
Scambicornus petiti (Stock \& Kleeton)
Stichopus regalis
Scambicornus poculiferus (Humes \& Cressey)
Opheodesoma grisea
Synapta maculata
Scambicornus prolixus Humes
Holothuria (Halodeima) edulis
Scambicornus retrospiculus Humes
Stichopus variegatus
Scambicornus sculptus Humes - see Caribulus
Scambicornus sentifer Humes
Labidodemas semperianum

Scambicornus sewelli

Actinopyga echinites
Holothuria (Acanthotrapeza) coluber
Holothuria (Halodeima) atra
Holothuria (Halodeima) edulis
Holothuria (Mertensiothuria) fuscocinerea
Holothuria (Microthele) nobilis
\section*{Scambicornus sp. - see Caribulus}
Scambicornus subgrandis (Humes \& Cressey)
Labidodemas rugosum
Scambicornus subtilis (Humes \& Cressey)
Actinopyga echinites
Holothuria (Acanthotrapeza) coluber
Holothuria (Halodeima) atra
Holothuria (Halodeima) edulis
Holothuria (Mertensiothuria) fuscocinerea
Holothuria (Microthele) nobilis
Opheodesoma grisea

Scambicornus tuberatus (Humes \& Cressey)
Bohadschia argus
Bohadschia cousteaui
Bohadschia koellikeri
Bohadschia marmorata
Bohadschia sp.
Bohadschia vitiensis
Opheodesoma grisea
Thelenota ananas
Scambicornus tylotus Humes
Bohadschia argus

Stellicola holothuriae (Ummerkutty)
 holothurians
 Opheodesoma spectabilis

Synapticola teres Voigt
Polyplectana kefersteini
Synapta maculata
Synaptiphilus luteus Canu \& Cuénot
Labidoplax digitata
Leptosynapta bergensis
Leptosynapta galliennei
Leptosynapta inhaerens
Synaptiphilus cantacuzenei cantacuzenei Bocquet \& Stock
Labidoplax digitata
Synaptiphilus cantacuzenei mixtus Guille \& Laubier

Labidoplax digitata

Synaptiphilus tridens (T. \& A. Scott)

Leptosynapta cruenta
Leptosynapta inhaerens
Tisbe cucumariae Humes
Ocnus planci
Tisbe furcata (Baird)
Ocnus planci
Tisbe holothuriae Humes
Holothuria (Holothuria) stellati Holothuria (Holothuria) tubulosa
Zygomolgus tenuifurcatus (Sars)
Labidoplax digitata

HOLOTHURIANS AND THEIR COPEPOD ASSOCIATES

Actinopyga agassizii (Selenka) ($=$ Muelleria agassizii Selenka)
Caribulus sculptus
Caribulus sp.
Diogenella spinicauda
Diogenidium nasutum
Diogenidium tectum
Metis holothuriae
Pseudanthessius pectinifer
Actinopyga echinites (Jaeger)
Chauliolobion bulbosum
Lecanurius planifrontalis
Scambicornus calcaratus
Scambicornus campanulipes
Scambicornus idoneus
Scambicornus lobulatus
Scambicornus sewelli
Scambicornus subtilis
Actinopyga lecanora (Jaeger) ($=$ Muelleria
lecanora Jaeger)
Calypsarion leprum
Lecanurius intestinalis
Lecamurius kossmannianus
Scambicornus calcaratus
Scambicornus campanulipes
Actinopyga mauritiana (Quoy \& Gaimard)
Calypsarion leprum
Scambicornus campanulipes
Actinopyga miliaris (Quoy \& Gaimard)
Calypsarion leprum
Lecanurius kossmannianus
Lecanurius planifrontalis
Scambicornus calcaratus
Scambicornus campanulipes

Actinopyga palauensis Panning ($=$ Actinopyga obesa palauensis Panning)	Scambicornus batiolatus Scambicornus brachysetosus Scambicornus campanulipes
Chauliolobion bulbosum	Scambicornus disparilis
Scambicornus calcaratus	Scambicornus idoneus
	Scambicormus modestus
Actinopyga plebeja (Selenka)	Scambicornus sewelli
Scambicornus cal	Scambicornus subtilis
Scambicornus campanulipes	Holothuria (Acanthotrapeza) coluber Semper
Actinopyga serratidens Pearson	(= Halodeima coluber (Semper))
Scambicornus calcaratus	Scambicornus sezvelli Scambicornus subtilis
Bohadschia argus Jaeger	Holothuria (Platyperona) difficilis Semper
Chauliolobion imparile	(= Microthele difficilis (Semper))
Scambicornus idoneus Scambicornus lobulatus	Scambicornus modestus
Scambicornus tuberatus	
Scambicornus tylotus	Holothuria (Halodeima) edulis Lesson (= Halodeima edulis Lesson)
Bohadschia cousteaui Cherbonnier	Scambicornus idoneus
Scambicornus tuberatus	Scambicornus prolixus
	Scambicornus sewelli
Bohadschia draschi Cherbonnier	Scambicornus subtilis
Scambicornus modestus	Holothuria (Panningothuria) forskali Delle Chiaje
Bohadschia graeffei (Semper)	Asterocheres boecki
Scambicornus lobulatus	Holothuria (Mertensiothuria) fuscocinerea
Bohadschia koellikeri (Semper)	(Jaeger) $=$ Holothuria curiosa Ludwig)
Scambicornus tuberatus	Scambicornus sezeelli Scambicornus subtilis
Bohadschia marmorata Jaeger	
Calypsarion sentosum Scambicornus tuberatus	Holothuria (Cystipus) fuscopunctata Jaeger (= Holothuria aff. fuscopunctata Semper)
Bohadschia vitiensis (Semper)	Lichothuria mandibularis
Scambicornus tuberatus	Holothuria (Selenkothuria) glaberrima (Selenka)
Cucumaria frauenfeldi	Diogenidium deforme
Cucumaricola notabilis	Holothuria (Halodeima) grisea (Selenka)
Holothuria (Thymioscyia) arenicola Semper	(= Ludwrigothuria grisea (Selenka))
(= Brandtothuria arenicola (Semper))	Caribulus sculptus Diogenidium nasutum
Diogenella deichmannae	
Diogenella impar Diogenella seticauda	Holothuria (Thymioscyia) impatiens Forskål
Diogenidium deforme	Diggenella seticauda
Nanaspis pollens	Scambicornus modestus
Nanaspis truncata	Holothuria (Mertensiothuria) leucospilota
Holothuria (Halodeima) atra Jaeger	(Brandt)
(= Halodeima atra (Jaeger))	Scambicornus idoneus
Calypsarion bilobatum Chauliolobion foliaceum Chauliolobion halodeimatis Lichothuria mandibularis	Holothuria (Halodeima) mexicana (Ludwig) (= Ludzrigothuria mexicana (Ludwig)) Caribulus sculptus

Actinopyga palauensis Panning ($=$ Actinopyga obesa palauensis Panning)
Chauliolobion bulbosum
Scambicornus calcaratus
Actinopyga plebeja (Selenka)
Scambicornus calcaratus
Scambicornus campanulipes

Actinopyga serratidens Pearson

Scambicornus calcaratus
Bohadschia argus Jaeger
Chauliolobion imparile Scambicornus idoneus Scambicornus lobulatus Scambicornus tuberatus Scambicornus tylotus

Bohadschia cousteaui Cherbonnier
Scambicornus tuberatus
Bohadschia draschi Cherbonnier
Scambicornus modestus

Bohadschia graeffei (Semper)

Scambicornus lobulatus
Bohadschia koellikeri (Semper)
Scambicormus tuberatus
Bohadschia marmorata Jaeger
Calypsarion sentosum
Scambicornus tuberatus
Bohadschia vitiensis (Semper)
Scambicornus tuberatus
Cucumaria frauenfeldi
Cucumaricola notabilis
Holothuria (Thymioscyia) arenicola Semper
(= Brandtothuria arenicola (Semper))
Diogenella deichmannae
Diogenella impar
Diogenella seticauda
orme
Nanaspis pollens
Nanaspis truncata
Holothuria (Halodeima) atra Jaeger
(= Halodeima atra (Jaeger))
Calypsarion bilobatum
noliaceum
Lichothuria mandibularis

Scambicornus batiolatus
Scambicornus brachysetosus
icornus campanilipes
Scomb
Scambicomis idonews
Scambicor
Scambicornus subtilis
Holothuria (Acanthotrapeza) coluber Semper
(= Halodeima coluber (Semper))
Scambicornus sewelli
Scambicornus subtilis
Holothuria (Platyperona) difficilis Semper
($=$ Microthele difficilis (Semper))
Scambicornus modestus
Holothuria (Halodeima) edulis Lesson
(= Halodeima edulis Lesson)
Scambicornus idoneus
Scambicornus prolixus
Scambicornus sewelli
Scambicornus subtilis
Holothuria (Panningothuria) forskali Delle Chiaje
Asterocheres boecki
Holothuria (Mertensiothuria) fuscocinerea
Jaeger) $=$ Holothuria curiosa Ludwig)
Scambicornus sewelli
Scambicornus subtilis
Holothuria (Cystipus) fuscopunctata Jaeger
(= Holothuria aff. fuscopunctata Semper)
Lichothuria mandibularis
Holothuria (Selenkothuria) glaberrima (Selenka)

Holothuria (Halodeima) grisea (Selenka)
(= Ludwigothuria grisea (Selenka))
Caribulus sculptus
Diogenidium nasutum
Holothuria (Thymioscyia) impatiens Forskål
Diogenella seticauda
Scambicornus modestus
Holothuria (Mertensiothuria) leucospilota (Brandt)
Scambicornus idoneus
Holothuria (Halodeima) mexicana (Ludwig)
($=$ Ludwigothuria mexicana (Ludwig))
Caribulus sculptus

Caribulus sp.
Diogenella spinicauda
Diogenidium deforme
Diogenidium nasutum
Pseudanthessius deficiens
Holothuria (Microthele) nobilis (Selenka)
(= Microthele nobilis (Selenka))
(= Argiodia nobilis (Selenka))
Lichothuria mandibularis
Nanaspis mixta
Scambicornus idoneus
Scambicarnus sewelli
Scambicornus subtilis
Holothuria (Lessonothuria) pardalis Selenka Scambicornus modestus

Holothuria (Platyperona) paroula (Selenka Nanaspis truncata

Holothuria (Lessonothuria) polii Della Chiaje Allantogynus delamarei

Holothuria (Metriatyla) scabra Jaeger
Lichothuria mandibularis
Scambicornus idoneus
Holothuria (Holothuria) stellati Della Chiaje
Allantogynus delamarei
Calypsina changeuxi
Tisbe holothuriae
Holothuria (Semperothuria) surinamensis
(Ludwig) ($=$ Semperothuria surinamensis (Ludwig))

Diogenella seticauda
Nanaspis pollens
Nanaspis truncata
Holothuria (Holothuria) tubulosa Gmelin
Allantogynus delamarei
Calypsina changeuxi
Sacodiscus humesi
Holothurians
Metaxymolgus cuspis
Isostichopus badionotus (Selenka)
Caribulus sculptus
Caribulus sp.
Diogenidium spinulosum
Nanaspis exigua
Nanaspis media
Nanaspis pollens

Labidodemas rugosum (Ludwig) ($=$ Holothuria rugosa Ludwig)
Scambicornus subgrandis
Labidodemas semperianum Selenka
Scambicornus sentifer
Labidoplax digitata (Montagu) (= Synapta digitata Montagu) (= Oestergrenia digitata (Montagu))
Synaptiphilus cantacuzenei cantacuzenei
Synaptiphilus cantacuzenei mixtus
Synaptiphilus luteus
Zygomolgus tenuifurcatus
Leptosynapta bergensis (Östergren)
Synaptiphilus luteus
Leptosynapta cruenta Cherbonnier Synaptiphilus tridens

Leptosynapta galliennei (Herapath)
Synaptiphilus luteus
Leptosynapta inhaerens (Müller)
Synaptiphilus luteus
Synaptiphilus tridens
Neothyonidium hawaiiense (Fisher) (= Thyonidium alexandri Fisher)
Scambicornus hamatus
Ocnus planci (Brandt) (= Cucumaria planci (Brandt))
Tisbe cucumariae Tisbe furcata

Ohshimella ehrenbergi (Selenka) (= Urodemas ehrenbergi Selenka)
Scambicornus modestus
Oneirophanta mutabilis Theel
Brychiopontius falcatus
Gomphopodarion byssoicum
Opheodesoma grisea (Semper)
Scambicornus poculiferus
Scambicornus subtilis
Scambicornus tuberatus
Opheodesoma spectabilis Fisher
Stellicola holothuriae
Parastichopus tremulus (Gunnerus) ($=$ Stichopus tremulus (Gunnerus))
Nanaspis ninae

Polyplectana kefersteini (Selenka) (= Synapta kefersteini Selenka)
Synapticola teres

Stichopus chloronotus Brandt
Chauliolobion forcipatum
Nanaspis tonsa
Scambicornus modestus

Stichopus horrens Selenka
Scambicornus modestus
Stichopus monotuberculatus (Quoy \& Gaimard)
Calypsarion carinatum
Scambicornus modestus
Stichopus parvimensis (Clark)
Namakosiramia californiensis

Stichopus regalis (Cuvier)

Myzopontius pungens
Nanaspis mediterranea
Scambicornus petiti

Stichopus variegatus Semper

Nanaspis boholensis
Nanaspis tonsa
Scambicornus modestus
Scambicornus retrospiculus

Synapta maculata (Chamisso \& Eysenhardt)

Lecanurius sp.
Scambicornus poculiferus
Synapticola teres
Thelenota ananas (Jaeger)
Chauliolobion tectuliferum
Nanaspis manca
Nanaspis pusilla
Nanaspis spinifera
Scambicornus batiolatus
Scambicornus tuberatus

REFERENCES

Baird, W., 1837. The natural history of the British Entomostraca. Mag. Zool. Bot., 1 : 309-333.
Barel, C. D. N. \& P. G. N. Kramers, 1970. Notes on associates of echinoderms from Plymouth and the coast of Brittany. Proc. kon. Ned. Akad. Wetensch. Amsterdam, (C), 73: 159-170.
-, 1977. A survey of the echinoderm associates of the north-east Atlantic area. Zool. Verhand., 156 : 1 -I 59.
Bocquet, C., 1952. Copépodes semi-parasites et parasites des échinodermes de la région de Roscoff. Description de Lichomolgus asterinae n. sp. Bull. Soc. Zool. France, 77: 495-504.

Bocquet, C. \& J. H. Stock, 1957. Copépodes parasites d'invertébrés des côtes de France. Va. Le genre $S y$ naptiphilus Canu et Cuénot. Proc. kon. Ned. Akad. Wetensch. Amsterdam, (C), 60: 679-695.
Boeck, A., 1859. Beskrivelse over tvende nye parasitiske Krebsdyr, Artotrogus orbicularis og Asterocheres Liljeborgii. Forh. Vid. Selsk Christiania, 1859: 171-182.
Bouligand, Y. \& C. Delamare-Deboutteville, 1959. Le dimorphisme sexuel de Linaresia mammillifera $\mathrm{Zu}-$ lueta, 1908, copépode parasite de l'octocoralliaire Mu ricea chameleon von Koch. C. R. Acad. Sci., Paris, 248: 286-288.
Brady, G. S., 1880. A monograph of the free and semiparasitic Copepoda of the British Islands, 3: 1-83 (Roy. Soc., London).
Bresciani, J. \& J. Lützen, 1962. Parasitic copepods from the west coast of Sweden including some new or little known species. Vidensk. Medd. fra Dansk Naturh. Foren., 124: 367-408.
Canu, E. \& L. Cuénot, i892. In: L. Cuénot, Commensaux et parasites des échinodermes (deuxième note). Rev. Biol. Nord France, 5: I-23.
Changeux, J.-P., 1958. Quelques caractères biologiques d'un copépode parasite d'holothuries: Allantogynus delamarei n. g. n. sp. C. R. Acad. Sci., Paris, 247 : 961-964.
holothurides. Act. Sci. Industr., 1284 : I-124.
Coull, B., 1977. Marine flora and fauna of the northeastern United States. Copepoda. Harpacticoida. NOAA Tech. Rept. NMFS Circ., U. S. Dept. Commerce, 399 : 1 -48.
Cuf́not, L., i892. See Canu \& Cuénot, 1892.

- 1912. Contributions à la faune du bassin d'Arcachon. V. Echinodermes. Bull. Stat. Biol. Arcachon, 14 : 17-116.
Dudley, P. L., 1966. Development and systematics of some Pacific marine symbiotic copepods. A study of the biology of the Notodelphyidae, associates of ascidians: r-282 (Univ. Washington Press, Seattle).
Edwards, C. L., 189 I . Beschreibung einiger neuen Copepoden und eines neuen copepodenähnlichen Krebses, Leuckartella paradoxa. Arch. Naturg., 57: 75-I04.
Giesbrecht, W., i805a. The subfamilies, genera, and species of the copepod family Ascomyzontidae Thorell: diagnosis, synonymy, and distribution. Ann. Mag. Nat. Hist. (6), 16 : 173-186. , 1895b. Mittheilungen über Copepoden. 1o u. 11. Mitt. Zool. Stat. Neapel, 12: 217-226.
, 1899. Die Asterocheriden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. Fauna Flora Golfes Neapel, 25 : i-217.
Gooding, R. U., 1963. External morphology and classification of marine poecilostome copepods belonging to the families Clausidiidae, Clausiidae, Nereicolidae, Eunicicolidae, Synaptiphilidae, Catiniidae, Anomopsyllidae, and Echiurophilidae: 1-247. (Ph.D. Thesis, Univ. Washington)
Gotro, R. V., 1954. A copepod new to the British Isles and others hitherto unrecorded from Irish coastal waters. Irish Nat. J., 11 : $133-\mathrm{I} 35$.
-, 1962. Egg-number and ecology in commensal and parasitic copepods. Ann. Mag. Nat. Hist., (i3), 5 : 97-107.
-, 1966. Copepods associated with marine invertebrates from the northern coast of Ireland. Irish Nat. J., 15 : 191-196.
Guille, A. \& L. Laubier, 1965. Synaptiphilus cantacazenei mixtus ssp. nov., copépode ectoparasite sur Oestergrenia digitata à Banyuls-sur-mer. Crustaceana, 9: 125-136.
Gurney, R., 1927. Zoological results of the Cambridge Expedition to the Suez Canal, 1924. XXXIII. Report on the Crustacea: Copepoda (Littoral and Semi-parasitic). Trans. zool. Soc. London, 22: 451-577.
Hartmann, C. E. R., 1856. Colacentes novum parasitorum genus. Dissertatio inauguralis historiconaturalis, etc., I-13 (Berolini) (In Latin).
Heegatrd, P., i944. A new copepol (Scambicormus hamatus) parasitic on a Japanese holothurian. Vidensk. Medd. fra Dansk Naturh. Foren., 107 : 359-366.
-, 1959. The shaping of the egg strings in the copepods. Smithsonian Misc. Coll., 137: 231-235.
Ho, J.-S. \& P. S. Perkins, 1977. A new family of cyclopoid copepod (Namakosiramiidae) parasitic on holothurians from southern California. J. Parasitol., 63 : 368-371.
Humes, A. G., 1957. Deux copépodes harpacticoïdes nouveaux du genre Tisbe, parasites des holothuries de la Méditerranée. Vie et Milieu, $8: 9-22$.
—, 1964. New species of Lichomolgus (Copepoda, Cyclopoida) from sea anemones and nudibranchs in Madagascar. Cah. ORSTOM, Oceanogr. 6 (1963, série Nosy Bé II) : 59-130.
——, 1967. A new species of Scambicornus (Copepoda, Cyclopoida, Lichomolgidae) associated with a holothurian in Madagascar, with notes on several previously described species. Beaufortia, 14: 135-155. , 1968. Lecanurius kossmannianus, a new cyclopoid copepod parasitic in holothurians in Madagascar. Proc. Biol. Soc. Wash., 81 : 179-190.
-, 1969. Copepods of the genus Scambicornus (Cyclopoida, Lichomolgidae) associated with holothurians in the West Indies. Stud. Fauna Curaçao Carib. Is., 29: 79-95.
-, 1973. Nanaspis (Copepoda, Cyclopoida) parasitic on the holothurian Thelenota ananas (Jaeger) at Eniwetok Atoll. J. Parasitol., 59 : 383-395.
-_, 1974. New cyclopoid copepods associated with an abyssal holothurian in the eastern North Atlantic. J. Nat. Hist., 8 : $101-117$.
-_, 1975a. Cyclopoid copepods (Nanaspididae and Sabelliphilidae) associated with holothurians in New Caledonia. Smithsonian Contr. Zool., 202: r-41.
- 1975b. Cyclopoid copepods associated with marine invertebrates in Mauritius. Zool. J. Linn. Soc., 56 : 171-I8I.
-, 1979. Synapticola teres Voigt, 1892 (Copepoda, Cyclopoida, Sabelliphilidae) from a holothurian in northeastern Australia. Crustaceana, 36 : 249-256.
Humes, A. G. \& R. F. Cressey, 1959. A new family and genus of cyclopoid copepods parasitic on a holothurian. J. Parasitol., 45 : 209-216.
——, 1961. Copépodes cyclopoides du genre Preherrmannella parasites d'holothuries et d'un oursin à Madagascar. Mem. Inst. Sci. Madagascar, 1959, (F), 3 : 25-65.
Humes, A. G. \& J.-S. Ho, 1967. New species of Stellicola
(Copepoda, Cyclopoida) associated with starfishes in Madagascar, with a redescription of S. caeruleus (Stebbing, 1900). Bull. Brit. Mus. (Nat. Hist.), Zool., 15 : 201-225. , 1969. Cyclopoid copepods parasitic in holothurians in Madagascar. J. Parasitol., 55: 877-894.
-, 1970. The genus Diogenella (Copepoda, Cyclopoida) parasitic in holothurians in the West Indies. Crustaceana, 19: 15-36.
—_, 1971. The genus Diogenidium (Copepoda, Cyclopoida) parasitic in holothurians in the West Indies. Crustaceana, 20: 171-19r.
Humes, A. G. \& J. S. Stock, i972. Preliminary notes on a revision of the Lichomolgidae, cyclopoid copepods mainly associated with marine invertebrates. Bull. zool. Mus., Univ. Amsterdam, 2: 121-133.
--, 1973. A revision of the family Lichomolgidae Kossmann, 1877 , cyclopoid copepods mainly associated with marine invertebrates. Smithsonian Contr. Zool., 127 : i-v, 1-368.
Kossmann, R., 1877. Entomostraca (i. Theil: Lichomolgidae). In: Zoologische Ergebnisse einer im Auftrage der Königlichen Academie der Wissenschaften zu Berlin ausgeführten Reise in die Küstengebiete des Rothen Meeres, erste Hälfte, 4: I-24.
Lang, K., 1948. Monographie der Harpacticiden. 2 vols. I-1682 (Lund, Sweden).
Liljeborg, W., 1853. Om de inom skåne förekommande Crustaceer af ordingarne Cladocera, Ostracoda och Copepoda.: i-xv, i-222 (Lund, Sweden).
Monticelli, F. S., 1892. Notizia preliminare intorno ad alcuni inquilini degli Holothurioidea del Golfo di Napoli. Monit. Zool. Ital., 3: 248-256.
Paterson, N. F., 1958. External features and life cycle of Cucumaricola notabilis nov. gen. et sp., a copepod parasite of the holothurian, Cucumaria. Parasitol., 48: 269-290.
Petkovsky, T., 1964. Zur Kenntnis der Harpacticiden Portugals (Crustacea, Copepoda). Lunds Univ. Årsskr., (n.s. 2), 59: i-22.
Philippi, A., 1843. Fernere Beobachtungen über die Copepoden des Mittelmeeres. Arch. Naturg., (9) 1: 54-7I.
Reddiah, K., 1968. Scambicornus brachysetosus n. sp. (Copepoda: Lichomolgidae) from a holothurian in the Gulf of Mannar. J. Mar. Biol. Ass. India, 1967, 9: 126-131.
Sars, G. O., igio. An account of the Crustacea of Norway with short descriptions and figures of all the species, vol. 5, Copepoda Harpacticoida, pts. XXIX \& XXX, Tachidiidae (concluded), Metidae, Balaenophilidae, Supplement (part) : 337-368 (Bergen).
-, 1915. An account of the Crustacea of Norway with short descriptions and figures of all the species, vol. 6, Copepoda Cyclopoida, pts. IX \& X. Ascomyzontidae (concluded), Acontiophoridae, Myzopontiidae, Dyspontiidae, Artotrogidae, Cancerillidae: 105-140 (Bergen).
, 1917. An account of the Crustacea of Norway with short descriptions and figures of all the species, vol. 6, Copepoda, Cyclopoida, pts. XI, XII. Clausidiidae, Lichomolgidae (part): 141-172 (Bergen).
Schirl, K., 1973. Cyclopoida Siphonostoma (Crustacea) von Banyuls (Frankreich, Pyrénées-Orientales) mit
besonderer Berücksichtigung des Gast-Wirtverhältnisses. Bijdr. Dierk., 43: 64-92.
Scott, T. \& A. Scott, i893. On some new or rare Crustacea from Scotland. Ann. Mag. Nat. Hist., (6), 12 : 237-246.
-, 1897. Notes on Sunaristes paguri Hesse and some other rare Crustacea. Ann. Mag. Nat. Hist., (6), 20 : 489-494.
Sebastian, M. J., 1972. Copepod associates of South Indian invertebrates: 1-344. (Ph.D. Thesis, Univ. Kerala, Trivandrum, India)
Sewell, R. B. S., 1949. The littoral and semi-parasitic Cyclopoida, the Monstrilloida and Notodelphyoida. John Murray Exped., 1933-34, sci. Repts., 9: 17-199.
Stebbing, T. R. R., igio. General catalogue of South African Crustacea (Part V of S. A. Crustacea, for the marine investigations in South Africa). Ann. S. Afr. Mus., 6: 518-563 (Copepoda only).
Stock, J. H., 1959. Copepoda associated with Neapolitan invertebrates. Pubbl. Staz. Zool. Napoli, 31 : 59-75. , 1960. Sur quelques copépodes associés aux invertébrés des côtes du Roussillon. Crustaceana, 1: 218-257.
-, 1964. On Scambicornus Heegaard, 1944, a senior synonym of Preherrmannella Seymour Sewell, 1949 (Copepoda, Cyclopoida). Beaufortia, 10 : 183-192.
-_, 1968. Copepoda endoparasitic of tropical holothurians. Bull. Zool. Mus., Univ. Amsterdam, 1: 89-105.
Stock, J. H. \& G. Kleeton, 1963. Copépodes associés aux invertébrés des côtes du Roussillon. Vie et Milieu, 13: 681-702.
Stock, J. H., A. G. Humes \& R. U. Gooding, 1962. Copepoda associated with West Indian invertebrates I. The genus Nanaspis (Siphonostoma, Nanaspidae). Stud. Fauna Curaçao Carib. Is., 13: I-20.
——, 1963a. Copepoda associated with West Indian invertebrates IV. The genera Octopicola, Pseudanthessius and Meomicola (Cyclopoida, Lichomolgidae). Stud. Fauna Curaçao Carib. Is., 18 : $1-74$.
——, 1963b. Copepoda associated with West Indian invertebrates II. Cancerillidae, Micropontiidae (Siphonostoma). Stud. Fauna Curaçao Carib. Is., 15: I-23.
Ummerkutty, A. N. P., 1962. Studies on Indian copepods 5. On eleven new species of marine cyclopoid copepods from the south-east coast of India. J. Mar. Biol. Ass. India, 196i, 3 : 19-69.
-, 1970. Description of Sabelliphilus foliacea sp. n. (Copepoda, Cyclopoida) with notes on the affinities of the species. Rec. zool. Surv. India, 64: 101-105.
Vilela, M. H., 1968. Copépodes da campanha do N. R. P. "Faial", 1958-59. Notas Estud. Inst. Biol. Mar., Lisbon, 35 : $\mathbf{I}-55$.
Voigt, W., 1892. Synapticola teres n. g., n. sp., ein parasitischer Copepode aus Synapta kefersteinii Sel. Z. Wiss. Zool., 53 (supplement) : 31-42.
Volkmann-Rocco, B., 1971. Some critical remarks on the taxonomy of Tisbe (Copepoda, Harpacticoida). Crustaceana, 21 : 127-132.
——, 1972. Species of Tisbe (Copepoda, Harpacticoida) from Beaufort, North Carolina. Archo. Oceanogr. Limnol., 17 : 223-258.
-, 1973. Tisbe biminiensis (Copepoda, Harpacticoida), a new species of the gracilis group. Archo. Oceanogr. Limnol., 18: 71-90.
Wilson, C. B., 1924. New North American parasitic cope-
pods, new hosts, and notes on copepod nomenclature. Proc. U. S. Nat. Mus., 64 : 1-22.

INDEX TO COPEPODS

Allantogynus 96
delamarei 96
Asterocheres 95
boecki 95
Brychiopontinus 95
falcatus 95
Calypsarion 34
bilobatum 34
carinatum 37
leprum 37
sentosum 38
Calypsina 38
changeuxi 38
Caribulus 38
sculptus 38
sp. 38
Chatliolobion 39
bulbosum 39
foliaceum 53
forcipatum 45
halodeimatis 49
imparile 39
tectuliferum 49
Cucumaricola 89
notabilis 89
Diogenella 53
deichmannae 53
impar 53
seticauda 53
spinicauda 54
Diogenidium 54
deforme 54
nasutum 54
spinulosum 54
tectum 54
Gomphopodarion 95
byssoicum 95
Lecanurius 55
intestinalis 55
kossmannianus 55
planifrontalis 55
sp. 60
Lichothuria 60
mandibularis 60
Metaxymolgus 89
cuspis 89
Metis 32
holothuriae 32
Myzopontius 95
pungens 95
Namakosiramia 33
californiensis 33
Nanaspis 96
boholensis 96
exigua 99
manca 99
media 99
mediterranea 100

[^0]: P_{1} coxa o-I basis I-o exp I-O; I-I; III, I, 4 enp o-I; I, 5, I
 P_{2} coxa o- 1 basis rooexp I-o; I-1; III, I, 5 enp o-I; I, II, 3, 2
 P_{3} coxa o-I basis $1-0 \exp \mathrm{I}-\mathrm{o} ; \mathrm{I}-\mathrm{I} ; \mathrm{III}, \mathrm{I}, 5$ enp o-I; I, III, 2, 2
 P_{4} coxa o-r basis i-o exp I-o; I-I; II, I, 5 enp o-r; I, III, I, I

[^1]: * hosts in more than one family
 \ddagger occurs in esophagus as well as on integument

