SOUTH AFRICAN PARASITIC COPEPODA

By
Brian Kensley
South African Museum, Cape Town
\&
John R. Grindley
Port Elizabeth Museum, Port Elizabeth

(With 35 figures)
[Ms. accepted 16 October 1972]

Contents

Introdugtion

A comprehensive account of South African parasitic Copepoda was published by the late K. H. Barnard in 1955 (Barnard 1955a). In this paper the majority of the species known up to that date were described and figured. Many other papers including Bannister \& Grindley (ig66), Barnard (1948, 1955b, 1957), Calman (1908), Ho (1972), Kensley (1970), Paterson (1958), and Stebbing (1900, 1905) also describe parasitic Copepoda from the South African region.

Since 1955 many more species have been added to the collections of the

South African Museum. The authors and various ichthyologists on the staff of the South African Museum including Dr P. A. Hulley, Mr S. Kannemeyer, Dr M.-L. Penrith, Mr M. Penrith, and Dr F. Talbot collected many of the specimens. Dr D. Eccles collected a large number of specimens from fish caught by anglers, commercial line boats, and trawlers between 1951 and 1953 while he was at the University of Cape Town. Many specimens from game fish and sharks were obtained during the long-line game-fish survey carried out by the South African Museum under the direction of Dr F. H. Talbot in ig6o and 1961. A large collection of specimens of the genus Pennella were collected from various species of whales by Dr P. Best. The largest contribution, however, was made by Dr Mary-Lou Hanson Pritchard of the University of Nebraska during six months of collecting in 1961. Dr Pritchard visited South Africa to collect Trematoda parasitic on fishes but agreed also to collect parasitic Copepoda for the second author. Her intensive and meticulous collecting brought many new records and several new species to light.

This study was initiated by the second author but the preparation of this paper has been almost entirely the work of the first author. Preliminary drawings for this work were prepared by Mr M. Leiserowitz but the final drawings are the work of the first author. That a further study of South African parasitic Copepoda was required is clearly evidenced by the description here of no less than fourteen species new to science.

A catalogue of all the species of parasitic Copepoda in the South African Museum is provided, giving details of the material, localities, hosts, catalogue numbers, and type material. Full descriptions and figures are given of species new to science and descriptions are also given of species recorded for the first time from South Africa, and of species that were previously inadequately described.

The nomenclature of the parts of parasitic Copepoda and in particular of their mouthparts has given rise to much confusion in the past. The studies of Bocquet \& Stock (1963) and Lewis (1969) have done much to clarify the situation and their recommendations are followed in this work.

Order NOTODELPHYOIDA

Family Notodelphyidae

Gunenotophorus blaizei n . sp.
(Fig. $1 a-j$)

Description

우. Head bent ventrally, with lateral margins somewhat ventrally produced. Thorax (2nd to $4^{\text {th }}$ segments) strongly inflated, containing eggs. Abdomen 4 -segmented, terminal segment slightly dorsally flexed and spinose, caudal rami dorsally curved, apically blunt. ist antenna with segmentation obscure, apex curved, distally covered with fine, short bristles. 2nd antenna 3 -segmented, 2 basal segments broad, terminal segment tapering, with stout apical hook.

Fig. I. Gunenotophorus blaizei n. sp. a. ovigerous ρ in lateral view; b. Ist antenna; c. 2nd antenna; d. urosome; e. apex of 2nd maxilla; f. apex of maxilliped; g. Ist thoracic leg; h. 2nd thoracic leg, with apex of endopod further enlarged; i. endopod of 3 rd thoracic leg; $j .4^{\text {th }}$ thoracic leg.

Mouthparts agreeing with G. globularis.i ist pair thoraric legs biramous, closely applied to mouthparts, exopod and endopod 3 -segmented, both rami bearing long plumed setae. 2nd thoraric legs with endopod slightly longer than exopod, endopod 4 -segmented, bearing 5 encircling membranes formed by fused setae on distal half, apex with minute pincer. Exopod 3-segmented, basal segment bearing single distal spine, median segment bearing 2 distal spines, terminal segment armed with 2 spines on outer margin and single apical spine. Exopods of 3 rd and 4 th legs stout, 3 -segmented, flexed dorsally, terminal segment armed with apical spine and numerous minute spinules. Endopod of 3 rd thoracic leg 4 -segmented, bearing 6 setiferous membranes and apical pincer. Endopod of 4 th thoracic leg 2 -segmented, basal segment short, distal segment elongate, bearing 4 setiferous membranes and apical pincer.

Material

2 ovigerous O ㅇ, from ascidian Gynandrocarpa unilateralis, taken in 62 m off Cape St Blaize, $\mathrm{N} \times \mathbf{W} \frac{1}{2} \mathrm{~W}, 8 \mathrm{~km}$. Total length $\mathrm{I}, 5^{-1,8 \mathrm{~mm} \text {. Holotype }}$ S.A.M. Aizo49, paratype S.A.M. Aizo4i.

Remarks

Although the present species is closely related to G. globularis Buchholz, and G. giganteus Schellenberg, both of which have been recorded from Pyura stolonifera from South Africa, several characteristics demand a specific separation. The size of the largest specimen ($\mathrm{r}, 8 \mathrm{~mm}$) is considerably less than that of G. globularis ($3-5 \mathrm{~mm}$) or G. giganteus ($7,2-8,4 \mathrm{~mm}$). The 2nd pair of thoracic legs show some differences. The endopod of G. globularis is without spines, or, as in Schellenberg's figure 38 of 1922, with a few minute spinules, while G. giganteus is completely unarmed. The condition in the present species, with I or 2 spines per segment on the outer margin of the exopod, approaches G. spinipes Schellenberg, which also, however, possesses strong spination on the inner margin of the distal segment of the exopod. The markedly-curved terminal segment of the 2 nd exopod of G. curvipes (Illg 1958) immediately separates it from the present species.

Order CALIGOIDA

Family Caligidae
Caligus cf. affinis Heller
(Fig. 2a-g)
Caligus affinis: Brian, 1934: 193, fig. 15; 1939: 178, fig. 1.
Description
ㅇ. Carapace obviously less than half total length. Genital segment flaskshaped, slightly longer than carapace, posterior lobes not very prominent. Abdomen 2-segmented, slightly shorter than genital segment, proximal segment about 3 times length of distal segment. Sternal furca small, arms crescentic.

Fig. 2. Caligus cf. affinis Heller. a. female in dorsal view; b. ist thoracic leg,,q; c. $4^{\text {th }}$ thoracic leg $\uparrow ; d$. $3^{\text {rd }}$ thoracic leg,,f; sternal furca; f. male in dorsal view; g. maxilliped, δ^{\star}.

Terminal segment of ist thoracic leg bearing 3 strong spines, single large simple seta, one minute seta on posterior margin. Penultimate segment with tiny scalelike spine on anterior margin. Spine of exopod of 3rd thoracic leg slightly curved. $4^{\text {th }}$ thoracic leg 3 -segmented, terminal segment bearing 4 spines, ultimate spine about twice length of the others, penultimate segment bearing distal spine. Terminal segment of ist maxilla a simple hooked spine.
on. Carapace slightly less than half total length. Genital segment flaskshaped but relatively narrower than in $\%$. Abdomen 2 -segmented, segments equal in length, slightly shorter than genital segment. Maxilliped subchelate, with large blunt thumb-like spine, and second blunt spine on 'palm'.

Material

I ovigerous $+\mathbf{I}$ ㅇ, $\mathbf{I}_{\widehat{O}}^{\hat{\prime}}$, from Pomatomus saltator, Durban. Total length $ㅇ$ $4,2-4,4 \mathrm{~mm}$, ô $3,0 \mathrm{~mm}$.

Previous records

From Sphyraena sp., at mouth of Congo River. From Umbrina cirrhosa, from Adriatic and Mediterranean.

Remarks

The present material agrees well with the descriptions of C. affinis, and falls within the size range given for 9 아 ($3,30-5,45 \mathrm{~mm}$) by Brian (1934). The only difference appears to be the shape of the genital segment in the 9 , which in the Mediterranean and West African specimens seems to be slightly broader than in the present material.

Caligus aesopus Wilson
(Fig. 3^{d-f})
Caligus aesopus Wilson, 1940: 72. Hewitt, 1963: 71, figs 4, 5. Yamaguti, 1963: 49, pl. 53, fig. 3.

Material

 $4,2-5,0 \mathrm{~mm}$, ô $3,9 \mathrm{~mm}$.
Previous records
From scombrid (? Seriola peruana) from Juan Fernandez. From Seriola grandis, New Zealand.

Remarks

The 4 -segmented 4 th thoracic leg, the shape of the genital segment, with its angular posterior corners, and the single segmented abdomen distinguish this species.

Caligus confusus Pillai

(Fig. 3^{a-c})
Caligus confusus Pillai, 1961: 104, fig. 10. Kirtisinghe, 1964: 68, figs 70-71.
Caligus alalongae (non Krøyer), Yamaguti, 1954:379, pl. 2, fig. 19, pl. 3, fig. 2 1.
Caligus constrictus (non Heller), Wilson, 1937: 25, pl. 3, fig. 3 .

Material

I ovigerous + , $2 \widehat{3}$, from gill chamber of Caranx djedaba, Durban. Total length $\& 4,0 \mathrm{~mm}$.

Fig. 3. Caligus confusus Pillai. a. female in dorsal view; b. sternal furca; c. $4^{\text {th }}$ thoracic leg, 9 . Caligus aesopus Wilson. d. genital segment and abdomen, $\varphi ; e$. sternal furca; $f .4$ th thoracic leg, \odot.

Previous records

From carangids taken from Panang, Galapagos, on Elagatis sp. and Caranx sp. Celebes, south India.

Caligus coryphaenae Steenstrup \& Lütken

(Fig. 4^{a-f})
Caligus coryphaenae Lewis, 1967: ıо1, figs 37-39. Pillai, $1962 a: 5$ 14, fig. 1.

Material

 from Euthynnus pelamis, off Cape Point. Total length $+7,2-8,5 \mathrm{~mm}$, ô $5,4 \mathrm{~mm}$. Colour when alive, salmon pink, genital segment and abdomen yellowish.

Previous records
See Lewis (1967: ro2)

Fig. 4. Caligus coryphaenae Steenstrup \& Lütken. a. female in dorsal view; b. sternal furca; c. 2nd maxilla, $\varphi ; d .4$ th thoracic leg, $\varphi ; e$. distal segment of abdomen, $q ; f .3$ rd thoracic leg.

Remarks

Three important characters by which this species may be distinguished were given by Pillai (1962a). These are the sternal furca arms which are apically pointed and divergent, the basal hook of the exopod of the 3rd thoracic leg, which is straight or outcurved, and the ultimate claw of the 4 th thoracic leg which is obviously longer than the penultimate one. As the present material agrees on all these points, it is placed in this species.

Caligus mortis Kensley
Caligus mortis Kensley, 1970: 167, figs $\mathbf{1}, 2$.

Material

Io ovigerous + +q, taken from intertidal fish from Torra Bay, S.W.A., Möwe Bay, S.W.A., Swakopmund, S.W.A., and Saldanha Bay, Cape. Host species include Clinus superciliosus, Blennius cornutus and Chorisochismus dentex.

Caligus penrithin. sp.
(Figs $5 a, b, 6 a-m, 7 a-d$)

Description

오. Carapace broadest posteriorly, less than half total length, cephalic region longer than thoracic area. Lunules tiny. Margin with narrow membranous fringe. Posterior sinuses relatively wide. Thoracic region extending well beyond postero-lateral borders. Eyes tiny, contiguous, in anterior half of cephalic area. Free thoracic segment about $\frac{1}{3}$ length of genital segment. Latter slightly broader than long, rectangular, antero-lateral corners more rounded than postero-lateral corners. Abdomen conical, 2 -segmented, slightly shorter than genital segment. ist antenna 2 -segmented, basal segment only slightly longer than distal segment, bearing about 12 plumose setae. Terminal segment with 12 distal simple setae. 2nd antenna 3 -segmented, basal segment short and broad, middle segment longer and broad, terminal segment tapering, with setule at base of strong falcate process. Mandible indistinctly 3-partite, with 12 subapical denticulations.

Postantennal process a simple spine-like structure. ist maxilla consisting of broad basal area bearing tiny lobe with 3 setae, and triangular spine-like process. 2nd maxilla 2 -segmented, basal segment slightly more than $\frac{1}{2}$ length of distal segment, twice as broad. Distal segment with membranous scale-like process slightly beyond midpoint, 2 distal spines, curved, inner slightly longer than outer, bearing 4 spinules and setiferous fringe, outer spine bearing setiferous fringe only. Maxilliped 2 -segmented, basal segment broad, tapering, terminal segment short, bearing strong falciform process, single seta present at distal end of segment. Sternal furca having divergent arms, latter apically truncate, straight-sided. ist thoracic leg biramous, endopod reduced to tiny process bearing single short spine, on protopodite. Latter consisting of single segment with single proximal plumed seta, shorter than ist exopod segment. Latter three times longer than wide, with spine at outer distal angle, inner margin bearing fringe of setae. Terminal segment $\frac{1}{2}$ length of ist segment twice longer than wide, bearing 3 curved distal spines, and 3 stout plumose setae on inner margin. 2nd thoracic leg biramous, both rami 3 -segmented. Protopodite 2 -segmented, ist segment less than $\frac{1}{2}$ length of 2nd segment, bearing single plumose seta on inner margin. 2nd segment only slightly longer than wide, with membranous fringe of setae and single stronger seta on inner margin. Basal segment of exopod equal in length to 2 distal segments together, bearing serrate spine at outer distal angle, plumose seta at inner distal angle. Middle segment short, also bearing serrate spine at outer distal angle, plumose seta at inner distal angle. Terminal segment longer than 2nd, bearing 2 simple spines on outer distal margin, 6 plumose setae on distal and inner margin, seta adjacent to spines shortest. Basal segment of endopod bearing single plumose seta on inner margin. 2nd segment longer than basal or terminal segments, with 2 distal plumose setae on inner margin, and pad of closely

Fig. 5. Caligus penrithi n. sp. a. female in dorsal view; b. male in dorsal view.
packed setules around outer margin. Terminal segment with similar smaller pad and 6 plumose setae. 3rd thoracic leg biramous. Protopodite expanded, 2 rami somewhat separated. Exopod 2-segmented, basal segment with distal plumose seta on inner angle and smaller spine at outer distal angle, outer margin fringed with setae. Terminal segment bearing 4 plumose setae and 3 short spines. Hook-like bipartite process arising at base of exopod with fine membranous margin distally. Endopod 3 -segmented, basal segment very narrow, with single plumose seta, 2nd and 3rd segments subequal, 2nd segment with 2, 3 rd segment with 4 plumose setae. $4^{\text {th }}$ thoracic leg uniramous, 4^{-} segmented, basal segment equal in length to 3 distal segments together, 2nd and 3 rd segments each with single fringed spine, terminal segment with 3 slightly curved fringed spines, apex of segment acute. $5^{\text {th }}$ thoracic leg situated at postero-lateral corner of genital segment, consisting of single tiny segment

Fig. 6. Caligus penrithi n. sp. \&. a. 2nd antenna; b. ist antenna; c. maxilliped; d. ist maxilla; e. 2nd maxilla; f. ist thoracic leg; g. 2nd thoracic leg; $h .3$ rd thoracic leg; $i .4^{\text {th }}$ thoracic leg; j. $5^{\text {th }}$ thoracic leg; k. caudal ramus; l. sternal furca; m. mandible.
bearing 3 plumose setae. Caudal ramus slightly longer than wide, with i simple and 4 plumose setae.
${ }^{\dagger}$. Carapace $\frac{1}{2}$ total length, widest posteriorly, lunules small, margin with narrow membranous fringe, posterior sinuses wide. Thoracic region extending beyond postero-lateral borders. Eyes small, contiguous, in anterior half of cephalic region. Free thoracic segment about $\frac{1}{2}$ length of genital segment. Latter twice longer than wide. Abdomen 2 -segmented, segments subequal, narrower than genital segment. Ist antenna 2 -segmented, basal segment shorter than terminal segment, bearing about 16 plumose setae on outer margin. Terminal segment with 2 long and 8 short simple setae distally. 2nd antenna 3 -segmented, basal segment broad, shorter than middle segment, latter broad, tapering, with 2 distal grooved bulges. Terminal segment short, with short simple seta proximally, plus 2 stout hook-like processes, one elongate the other short. Postantennal process a simple narrowly triangular spine. ist maxilla a narrow spine-like process, with basal lobule bearing 3 setae. 2nd maxilla as in . Maxilliped 2 -segmented, basal segment very broad, with 2 pointed tooth-like processes proximally. Terminal segment short, bearing distal simple seta, and strong slightly curved process which meets tooth-like processes of basal segment. Sternal furca with arms relatively shorter than in P, basally slightly curved. ist thoracic leg biramous, endopod reduced to tiny process bearing 2 terminal spinules. Protopodite consisting of single segment, with small plumose seta proximally, $\frac{2}{3}$ rd length of basal segment of exopod. Latter 2 -segmented, with inner margin fringed with setae, and small spine on outer

Fig. 7. Caligus penrithi n. sp. ठै. a. Ist antenna; b. 2nd antenna; c. sternal furca; d. maxilliped.
distal angle. Terminal segment slightly less than $\frac{1}{2}$ length of basal segment, with 3 curved spines and 3 large plumose setae. 2nd thoracic leg biramous, protopodite 2 -segmented, basal segment short, with single plumose seta. 2nd segment with inner margin fringed with setae, and single setae at outer distal angle. Exopod 3 -segmented, basal segment equal in length to 2 distal segments together, with strong serrate spine at outer distal angle, and plumose seta at inner distal angle. Middle segment $\frac{1}{2}$ length of terminal segment, carrying single serrate spine, and single plumose seta. Terminal segment with 2 short spines on outer margin, and 6 large plumose setae. Endopod 3 -segmented, ist and 3rd segments subequal, middle segment longer. Basal segment bearing single plumose seta, middle segment with 2 plumose setae and pad of closely packed spinules. Terminal segment with similar pad, plus 6 plumose setae. 3rd thoracic leg biramous, protopodite expanded, bearing setal fringe. Exopod 2 -segmented, with bipartite spine-like process at base, basal segment with single plumose seta, terminal segment with 4 plumose setae and 3 small spines. Endopod 2 -segmented, basal segment narrow, with single plumose seta, terminal segment with 6 plumose setae and margin of fine hairs. 4 th thoracic leg 4 -segmented, basal segment slightly longer than 3 distal segments together. 2nd and 3 rd segments each with single fringed spine, terminal segment with 3 slightly curved fringed spines, terminal one longest, apex of segment acute. Caudal ramus longer than wide, with I small and 4 large plumose setae.

Material

5 ovigerous + I Bay, S.W.A. Holotype and allotype S.A.M. Aizo50, paratypes S.A.M. Ai 3051. Total length $+4,5 \mathrm{~mm}$. Length of egg sacs $2,5 \mathrm{~mm}$. Total length ơ $3,0 \mathrm{~mm}$.

Remarks

Of the species of Caligus having the carapace less than half the total length, and a 2 -segmented abdomen about equal in length to the genital segment, the present species most closely resembles C. robustus Bassett-Smith. The elongate nature of the genital segment and abdomen of the latter species are very different, however, from C. penrithi, with its roughly quadrate genital segment and conical abdomen.

There is some resemblance to C. djedabae Rangnekar, particularly in the shape of the carapace and genital segment of the female. The abdomen, however, consists of a single segment, albeit conical, and is relatively shorter than in C. penrithi. Other differences also exist in the shape of the sternal furca and the $4^{\text {th }}$ thoracic legs of the φ.

The species is named for Dr M.-L. and Mr M. J. Penrith of the State Museum, Windhoek, who caught the fish host of this species.

Lepeophtheirus lalandei n. sp.

(Figs $8 a, b, 9^{a-l, ~ 10 a-d)}$

Description

ㅇ. Carapace about $\frac{1}{2}$ total length, obviously longer than wide, sides almost parallel, with moderately wide membranous fringe. Cephalic region longer than thoracic region, with contiguous eyes at about midpoint. Posterior sinuses narrow. Thoracic region extending slightly beyond postero-lateral borders. Free thoracic segment about $\frac{1}{3}$ length of genital segment, wider than long. Genital segment longer than wide, with well-developed posterior lobes, 5 th legs just visible beneath these. Abdomen slightly shorter than genital segment, unsegmented, twice longer than wide. Ist antenna 2 -segmented, basal segment broadly tapering, bearing about 13 plumose setae on anterior margin, terminal segment shorter than basal segment, with about 12 distal setae. 2nd antenna 3 -segmented, basal segment narrow, 2nd segment broad, stout, terminal segment more slender, with simple seta below curved hooked apex, strong spine at base. Postantennal process a small simple slightly curved spine. ist maxilla bifid, arms short and rounded. 2nd maxilla 2 -segmented, basal segment slightly shorter but stouter than terminal segment, latter bearing a rounded scale at midpoint, terminally with 2 curved fringed spines, unequal in length, Mandible slender, with 12 distal denticulations, apically curved. Maxilliped 2 -segmented, basal segment stout, terminal segment about $\frac{1}{5}$ length of basal segment, with terminal strongly falcate process, and single seta at base. Sternal furca very small, arms stout, stubby. ist thoracic leg biramous, endopod reduced to tiny process on protopodite. Latter broad, about same length as ist exopod segment. Exopod 2 -segmented, basal segment twice longer than broad, inner margin fringed with setae, and bearing single short spine at outer distal angle. Terminal segment slightly more than $\frac{1}{2}$ length of basal segment, roughly rectangular, bearing 3 large plumose setae on inner margin, i short plumose seta at inner distal angle, and 3 short fringed spines, inner 2 each having an accessory spinule at midpoint. 2nd thoracic leg biramous. Protopodite 2 -segmented, basal segment about $\frac{1}{4}$ length of 2nd segment, with single plumose seta on inner margin. 2nd segment with setal fringe on inner margin. Exopod 3 -segmented, basal segment equal in length to 2 distal segments together, with ${ }^{\text {I }}$ plumose seta on inner margin, and strong fringed spine on outer distal angle. 2nd segment similarly armed. Terminal segment with 6 plumose setae and 2 fringed spines. Endopod 3 -segmented, middle segment longer than ist or 3 rd. ist and 2 nd segments each with single plumose seta on inner margin, terminal segment with 6 plumose setae. 3rd thoracic legs biramous, protopodite broad and expanded. Exo- and endopod close together. Exopod 2 -segmented, basal segment with single plumose seta at outer and inner distal corners. Terminal segment with 3 simple setae, and 4 plumose setae. A broad membranous process at base of exopod, bearing spine on median edge. Endopod 2-segmented, basal segment narrow, with single plumose seta, terminal segment with 5

Fig. 8. Lepeophtheirus lalandei n. sp. a. female in dorsal view; b. male in dorsal view.
plumose setae. $4^{\text {th }}$ thoracic leg uniramous, 4 -segmented, basal segment stout, about twice longer than wide, at least $2-3$ times wider than other segments. 2nd segment shorter than 3rd, anterior margin elongated, and joint therefore diagonal, apex of elongation bearing tiny spine and semicircular flange. 3 rd segment bearing apically a strong fringed spine with semicircular flange, posterior margin with small spine near apex. Terminal segment bearing 3 strong curved fringed spines, decreasing in size towards anterior margin. Posterior margin bearing 2 small spines at distal end. 3 rd and 4 th segments both bearing fringe of short fused setae on entire length of anterior margins. $5^{\text {th }}$ thoracic legs situated on ventral surface of genital segment, roughly figshaped, bearing apical spine, and 3 plumose setae.

0 . Carapace more than $\frac{1}{2}$ entire length, longer than wide, free thoracic segment wider than long, about $\frac{1}{3}$ length of genital segment. Latter only slightly longer than wide, with flattened flap posteriorly, corresponding to lobes in \dot{q}°.

Fig. 9. Lepeophtheirus lalandei n. sp. a. ist antenna, q; b. ist maxilla, q; c. sternal furca; d. 2nd maxilla,, ; e. maxilliped,,f. caudal ramus; g. mandible; h. 2nd antenna,,$q ; i$. ist maxilla, ô; j. $5^{\text {th }}$ thoracic leg, $\circ ;+k$. 2nd antenna, $\delta^{\hat{*}}$; l. maxilliped, of.

Abdomen 2-segmented, ist segment shorter than 2nd. Caudal rami broadly oval, bearing 4 elongate plumose setae. ist antenna 2 -segmented, basal segment slightly longer than terminal segment, with about 12 plumose setae on anterior margin. Terminal segment bearing about 13 simple distal setae. 2nd antenna 2 -segmented, apically bearing a curved hook with simple seta, basal segment bearing large proximal ridged area, separated from distal ridged cushion, latter bearing 2 blunt spines, inner one twice length of outer. Ist maxilla bifid, also bearing accessory spine on inner margin. 2nd maxilla as in $ㅇ$. . Maxilliped subchelate, with short bifid spine on basal segment almost meeting tip of apical

Fig. io. Lepeophtheirus lalandei n. sp. q. a. ist thoracic leg; b. 2nd thoracic leg; c. 3rd thoracic leg; d. $4^{\text {th }}$ thoracic leg.
hook. Ist to 5 th thoracic legs as in 9 . Caudal ramus longer than wide, with I small and 4 large plumose setae.

Material

7 우, I ${ }^{\text {T, }}$, from Seriola lalandi, taken at Vema Seamount. Holotype and allotype S.A.M. Ai 3052, paratypes S.A.M. Ai 3053 . \& total length $10,3 \mathrm{~mm}$, carapace length $5,2 \mathrm{~mm}$. ô total length $6,4 \mathrm{~mm}$, carapace length $4,0 \mathrm{~mm}$.

Remarks

Of the species of Lepeophtheirus in which the carapace is about half the entire length, the present material resembles five species to some degree, viz. L. argentus, L. constrictus, L. longipes, L. salmonis and L. thompsoni.
L. argentus Hewitt differs from the present species in the carapace shape of the q, the ist maxilla and the segmented abdomen. The male of L. argentus has an abdomen much longer than in the present species, does not possess a subchelate maxilliped, has a differently shaped 2nd antenna, and does not possess an accessory spine on the ist maxilla.
L. constrictus Wilson closely resembles the present species in the shape of the sternal furca, the $4^{\text {th }}$ and 5 th thoracic legs, the ist maxillae, and the undivided abdomen in the female. The carapace shape, however, differs, while the genital segment does not possess posterior lobes. L. constrictus at $6,6 \mathrm{~mm}$ total length is considerably smaller than the present species.
L. longipes Wilson differs in possessing a segmented abdomen, which is relatively smaller, and in the shape of the sternal furca and ist maxilla.
L. salmonis Wilson differs from the present species in the relatively shorter segments of the 4 th thoracic leg in the female, the undivided ist maxilla and in the shape of the carapace. The male of L. salmonis is very similar to the present species.
L. thompsoni Baird differs in possessing a segmented abdomen, a relatively smaller 4 th pair of thoracic legs, in the shape of the furca and ist maxilla, and in the shape of the carapace in the female.

Lepeophtheirus longispinosus Wilson

(Fig. I I a, b)
Lepeophtheirus longispinosus Wilson, 1908: 604, pl. 52. Yamaguti, 1963: 74, pl. 99, fig. 5.
(non Lepeophtheirus sp. of Barnard, 1955a: 252)

Material

3 ovigerous $\uparrow \uparrow+$ from Carcharinus leucas. Total length 2,9-3,0 mm.

Previous records

On Sphyrna zygaena from N. America.

Remarks

The character of the ist maxilla and the furca makes this species easily recognizable. The former is slender, elongate, armed with a slender spine at the base. The furcal arms are widely divergent, apically spatulate, and bear a slender secondary branch on the inner margin.

Fig. I I. Lepeophtheirus longispinosus Wilson. a. sternal furca; b. oral cone and ist maxilla.

Lepeophtheirus natalensis n. sp.
(Figs 12, 13a-k)

Description

ㅇ. Carapace more than half total length, slightly longer than wide, cephalic region longer than thoracic area, with narrow membranous fringe. Eyes situated at posterior end of cephalic region. Posterior sinuses moderately wide. Free thoracic segment about $\frac{1}{3}$ length of genital segment. Latter roughly rectangular, with rounded posterior lobes. Abdomen unsegmented, $\frac{1}{3}$ length of genital segment, longer than broad, with narrow posterior slit. ist antenna with basal segment slightly longer than terminal segment, former bearing about ig plumose setae, latter with 12 simple setae distally. 2nd antenna 3 -segmented, middle segment bearing striated rounded process, terminal segment bearing simple seta, and tapering hook-like process. Postantennal process a simple stout hook. ist maxilla flanking oral cone, consisting of simple stout posteriorly-directed hook. 2nd maxilla 3 -segmented, 2 distal segments slender, 2 nd bearing 2 fringed spines, terminal segment bearing single elongate fringed spine. Maxilliped 2-segmented, basal segment stout, 5 times longer than terminal segment, bearing strongly-curved apical process. Branches of sternal furca slender, divergent, apically rounded. ist thoracic leg biramous, endopod reduced to tiny process on protopodite. Latter shorter than ist segment of exopod, with

Fig. 12. Lepeophtheirus natalensis n. sp. Female in dorsal view.
short plumose seta at outer distal angle, and at midpoint of posterior margin. Endopod 2-segmented, basal segment bearing fringe of setae on posterior margin, and tiny spine at outer distal angle. Terminal segment bearing 3 large plumose setae on posterior margin, and i small simple spine and 3 serrate spines distally, inner 2 each with accessory spinule. 2nd thoracic leg biramous. Protopodite 2 -segmented, basal segment $\frac{1}{3}$ length of 2nd segment, with single plumose seta. 2nd segment with setal fringe on posterior margin, and simple spine at outer distal angle. Exopod 3 -segmented, basal segment slightly longer than 2 distal segments together, bearing strong fringed spine at outer distal angle, single plumose seta at inner distal angle. 2nd segment similarly armed. Terminal segment with 6 large plumose setae, and 2 short spines. 3 rd thoracic leg biramous, protopodite expanded, exopod 2 -segmented, basal segment small, bearing single plumose seta, terminal segment with 6 plumose setae and single short spine. Strong bipartite hooked and striated process at base of exopod. Endopod 2 -segmented, basal segment narrow, with single plumose seta,

Fig. 13. Lepeophtheirus natalensis n. sp. ․ . a. ist antenna; b. 2nd antenna; c. maxilliped; d. oral cone and ist maxillae; e. 2nd maxilla; f. sternal furca; g. ist thoracic leg; h. 2nd thoracic leg;
i. $3^{\text {rd }}$ thoracic leg; j. caudal ramus; $k .4^{\text {th }}$ thoracic leg.
terminal segment with 6 plumose setae. $4^{\text {th }}$ thoracic leg uniramous, 3 -segmented, basal segment slightly shorter than 2 distal segments together, with single distal plumose seta. Middle segment bearing distal fringed spine. Terminal segment bearing distally 1 long and 2 short fringed spines. $5^{\text {th }}$ thoracic legs reduced to 3 setae on each side of genital segment. Caudal rami very short, rounded, bearing plumose setae.

Material

6 ovigerous 아 from Carcharinus leucas, from Natal. Holotype S.A.M. Ai3054, paratypes S.A.M. Ai3055. Total length (excluding egg sacs) 5, i$5,2 \mathrm{~mm}$.

Remarks

In general shape and proportions the present species most closely resembles L. insignis Wilson, of the species of the genus known from South Africa. It can, however, immediately be distinguished from this and all the other South African species by the ist maxilla, which is a simple stout spine, and not bifurcate. Amongst the other species of the genus which possess an undivided ist maxilla and an abdomen of a single segment, this species most closely resembles L. parviventris Wilson, from the North Pacific. It differs from this species in the greater length of the furcal arms, and in the ist maxillae which in the former are bifurcate.

Family Cecropidae
Cecrops exiguus Wilson

(Fig. $14 a, b$)
Cecrops exiguus Wilson, 1923 : 1 , figs $1-15$. Yamaguti, 1963 : 89. Shiino, $1965: 38 \mathrm{r}$, figs $1-4$.

Material

 Bay, Cape. Total length \uparrow io,0-1 $3,5 \mathrm{~mm}$, ơ $6,0 \mathrm{~mm}$.

Fig. 14. Cecrops exiguus Wilson. a. female in dorsal view; b. male in dorsal view.

Previous records

From shark taken off Florida. From Mola mola, Japan.

Remarks

Cecrops exiguus may be easily separated from the more common C. latreillei being about half the size of the latter species. Differences also exist in the shape of the dorsal plates of both the male and female. The females of C. exiguus are pale-ochrous yellow with olive-green ovisacs, while the males are a pale creamy colour.

Family Euryphoridae

Elytrophora hemiptera Wilson

(Fig. $15 a-d$)
Elytrophora hemiptera Wilson, 1921 : 4, pl. 2, figs 13-19. Yamaguti, 1963: 103, pl. 123, fig. 2.

Material

I q from yellowfin tunny, Thunnus albacares, Table Bay. i 3 ổ * from bluefin tunny, Thunnus thynnus, 48 km west of Cape Point. Total length $\& 7,8 \mathrm{~mm}$, of $6,1 \mathrm{~mm}$.

Fig. 15. Elytrophora hemiptera Wilson. a. female in dorsal view; b. sternal furca, \mathcal{P}; c. male in dorsal view; d. sternal furca, ${ }^{\wedge}$.

Previous records

From Thunnus thynnus, Thunnus albacares, Isurus glaucus, Japan.

Remarks

The status of the male specimens is not absolutely certain. They are to some extent intermediate in form between E. hemiptera Wilson from Japan and E. atlantica Wilson from the North Atlantic. The status of this parasite may be of interest in relation to the status and movements of their hosts in this area. Their colour when alive is light yellowish with fine reticular brown markings giving a general appearance of light brown.

Gloiopotes watsoni Kirtisinghe

Gloiopotes watsoni Kirtisinghe, 1934: 167. Cressey, 1967a: 7, figs 38-39. Gloiopotes auriculatus Barnard, 1957: I 1, fig. 8.

Description

ㅇ. Carapace longer than broad, half total length. Postero-median lobe of thorax with 2 anterior and 1 or 2 posterior spines on each postero-lateral rounded corner. Dorsal plates of 4 th thoracic segment completely separate, ear-shaped. Genital segment with row of 3 spines on either side of dorsal convexity. Posterior lobes spinulose on inner surface, usually in single row proximally. Ovate projection on posterior lobes spinose on inner and outer margins. Abdomen 2 -segmented, distal segment about twice length of proximal. Latter with 4 dorsal spines, distal segment with io dorsal spines, 8-1o lateral spines. Caudal rami elongate, bearing about in spines.

ठ'. Carapace longer than broad, slightly less than half total length. Posterior median lobe of thorax with 2 lateral and 2 posterior spines on each side. Dorsal plates of 4 th thoracic segment completely separate, subtriangular, with 3-5 spines near posterior margin. Genital segment as broad as long, with single spine on each side near centre, single smaller spine laterally, 3-4 spines on each rounded postero-lateral corner. Genital segment projections slender, elongate, with about 4 spines on inner (dorsal) margin, 7 on outer (ventral) margin. 3 strong apical spines. Abdomen 2 -segmented, proximal segment half length of distal. Former bearing 2 spines, latter with variable arrangement, usually 4 or 5 . Caudal rami as in 9 .

When fresh the general colour of the thorax and abdomen is blue with purple markings on the dorsal surface. The egg sacs are salmon pink. They occur most abundantly between the anal fins and around the anus of their host where they may produce extensive wounds.

Material

Numerous $و+q$ and ${ }^{\lambda} \sigma^{\lambda}$, from black and striped marlin (Makaira indica and Makaira audax), from Cape.

Family Pandaridae
 Echthrogaleus torpedinis Wilson

(Fig. I6)
Echthrogaleus torpedinis Wilson, 1907: 371, pl. 21. Yamaguti, 1963: 120, pl. 137, fig. 2. Cressey, 19676: 58, figs 291-294.

Material

3 ovigerous 아, from Torpedo sp., taken west of Slangkop, Cape. Total length ㅇ $11,4-\mathrm{I} 3,2 \mathrm{~mm}$.

Previous records

From Tetranarce occidentalis, east coast of U.S.A.

Remarks

No differences can be found between the present material and the description given by Cressey (1967).

Fig. 16. Echthrogaleus torpedinis Wilson. Female in dorsal view.

Family Anthosomatidae

Lernanthropodes natalensis n. sp.
(Fig. I $7 a-h$)

Description

Cephalothorax slightly ventrally flexed, widest posteriorly, rectangular in lateral view. Trunk narrow, cylindrical, about same width as cephalothorax. ist antenna 7 -segmented, bearing several setae. 2nd antenna with uncinate strongly chitinised apical segment, basal segment broadly tapering. Mouth tube

Fig. 17. Lernanthropodes natalensis n. sp. a. female in dorsal view; b. 2nd maxilla; c. cephalothorax in lateral view; d. posterior margin of 3rd thoracic leg 'sheath'; e. ist antenna; f. 2nd antenna; g. ist maxilla; h. 2nd thoracic leg.
conical. Ist maxilla biramous, each ramus of single segment tipped with setae. 2nd maxilla 3 -segmented, terminal segment armed with 2 rows of short spines, median segment with distal seta, basal seta broad. Maxilliped 2 -segmented, terminal segment hook-shaped. ist and 2nd thoracic legs biramous, rami each of one segment, outer segment broader than inner, armed with 5 short spines, inner ramus tipped with single seta, papilla external to exopod bearing single seta. 3rd thoracic legs almost as long as trunk, fused to form broad lamella completely ensheathing genital segment and abdomen ventrally, leaving narrow gap dorsally. Lamella with single point posteriorly on each side. 4 th legs inside sheath formed by 3 rd legs, biramous, rami fused only at base, lamellar, protruding beyond sheath. Genital segment spindle-shaped. Abdomen slightly shorter than genital segment, with pair of lamellar caudal rami.

Material

I ovigerous + , from Chorinemus tol, Durban. Holotype S.A.M. Ai 3034. Total length $3,5 \mathrm{~mm}$. Egg sac length $\mathrm{I}, 7 \mathrm{~mm}$.

Remarks

Three species of the genus Lernanthropodes have been described, viz. L. cucullus (Bere 1936) and L. chorinemi and L. trachinoti (Pillai 1962a). L. cucullus has the sheath formed by the 3rd thoracic legs completely enclosing the genital segment and abdomen, and 4 th thoracic legs, none of which are ventrally visible. The posterior margin of this sheath is divided into 2 lobes on either side, unlike the present species, which has only a slight median indication of subdivision.
L. trachinoti, taken from Trachinotus blochii from India, also has the posterior margin of the sheath divided into 2 lobes on either side, while the cephalothorax is rectangular, rather than triangular as in the present material.
L. chorinemi, recorded from Chorinemus lysan from India, closely resembles the present species, but several differences make a specific separation seem desirable. L. chorinemi, with a total length of $8,2 \mathrm{~mm}$, is considerably larger than the ovigerous female of L. natalensis ($3,5 \mathrm{~mm}$). The evenly rounded posterior margin of the sheath in Pillai's species differs from the slightly bilobed condition in L. natalensis. Several differences exist in the structure of the appendages. The ist antenna of L. chorinemi has 4 segments, as against the 7 of L. natalensis, while the 2nd antenna of the Indian species possesses 3 small spines at the base of the terminal segment, not found in the present species.

Lernanthropus corniger Yamaguti

(Fig. $18 a, b$)
Lernanthropus corniger Yamaguti, 1954:387, pl. 4, figs 35-39, pl. 5, figs 40-41; 1963: 148, pl. 16ı, fig. 1 . Pillai, $1963: 660$, fig. 3.

Material

i I ovigerous + io $9 P$, total length (from 'horns' to end of dorsal plate) $3,4^{-3,7} \mathrm{~mm}$. From Caranx djedaba, Durban.

Previous records

On Megalaspis sp., from Macassar, and on Megalaspis cordyla from Trivandrum, India.

Remarks

No differences can be detected between the present material and Yamaguti's descriptions and figures. The ventro-lateral extensions of the head forming the prominent 'horns', and the 3 ventral lamellae of the 3 rd legs, make this species unmistakable.

Fig. 18. Lernanthropus corniger Yamaguti. a. female in dorsal view; b. female in ventral view.

Lernanthropus ecclesi n. sp.

(Figs 19a-c, 20a-l)
Description
ㅇ. Body somewhat cylindrical, head separated by constriction from rest of body, slightly less than $\frac{1}{4}$ total length. Dorsal plate situated posteriorly, slightly wider than rest of body, posterior margin variable, evenly rounded to very slightly bilobed. ist antenna and bases of 2nd antenna dorsally visible. ist antenna 7 -segmented, terminal segment shortest, with 4 blunt spines. 2nd antenna 2 -segmented, basal segment curved, tapering, terminal segment shorter, strongly falcate. Ist maxilla 3 -segmented, terminal segment conical, basal segment with 2 broad spines distally. 2nd maxilla 3 -segmented, terminal segment with 2 rows of blunt teeth and blunt spine on inner margin, middle segment with single distal spine. Maxilliped 2 -segmented, basal segment broad, terminal segment shorter, tapering distally with falcate striated process and short blunt spine. Ist thoracic leg biramous, exopod of i segment, bearing 5 blunt distal spines, endopod of i segment, bearing elongate blunt distal spine. Tiny papilla-like process at base of endopod. 2nd thoracic leg biramous, exopod of I segment, bearing 4 short distal spines, tiny papilla bearing single

Fig. 19. Lernanthropus ecclesi n. sp. a. female in dorsal view; b. female in ventral view; c. male in dorsal view.
seta at base of exopod. Endopod of i segment, bearing single terminal spine. 3 rd legs lamellar, uniramous, much shorter than 4 th legs. Latter biramous, inner ramus slightly longer than outer, both lamellar with long tapering apex. $5^{\text {th }}$ leg of single lamella, not dorsally visible. Caudal rami similar in form to 5th legs.
t. Slightly more than $\frac{1}{2}$ length of q, body slender. ist antenna dorsally visible, structure as in \circ. 2nd antenna 2 -segmented, basal segment broadly tapering, with tiny spine on inner face near base, terminal segment short, with strong striated falcate distal process, and short blunt spine at midpoint. Mandible slender, apex with 7 denticles. Ist and 2nd maxilli and maxilliped as in \circ. Ist thoracic leg biramous, exopod of I segment, with 5 short distal spines. Endopod I-segmented, with slender bristled seta, 2nd thoracic leg biramous, exopod distally expanded, bearing 3 submarginal spines, endopod shorter than exopod, armed with short bristles and terminal fringed seta. 3 rd thoracic leg biramous, outer ramus about twice length of inner. 4th legs biramous, rami subequal, lamellar. $5^{\text {th }}$ legs absent. Caudal rami short, slender.

Fig. 20. Lernanthropus ecclesi n. sp. a. 2nd antenna, \circ; b. ist antenna, \uparrow; c. maxilliped, \uparrow; d. 3 variations in the posterior margin of the dorsal plate, f; e. mandible; f. ist maxilla; g. 2nd maxilla; h. ist thoracic leg, $\circ ; i$. 2nd thoracic leg, $\rho ; j$. 2nd antenna, ơ ${ }^{t} ; k$. ist thoracic leg, ${ }^{t}$;
l. 2nd thoracic leg, ${ }^{\hat{c}}$.

Material

9 ovigerous +2 아, 5 with attached $\widehat{o}^{\wedge} \sigma^{\wedge}+2 \widehat{o}^{\wedge} 0^{\wedge}$, from yellowtail, Seriola lalandi, Kalk Bay. Holotype and allotype S.A.M. Aizo2 i, paratypes S.A.M. Ai 3057. Total length of $7,8 \mathrm{~mm}$, ơ $3,4 \mathrm{~mm}$.

Remarks

Wilson (1932) described Lernanthropus paenulatus taken from Seriola lalandi from Woods Hole, U.S.A. Undoubtedly, the present material, taken from the same host, is closely related to Wilson's species, but some differences do exist. The female of L. paenulatus, at $9,5 \mathrm{~mm}$, is somewhat larger than L. ecclesi
$(6,9-7,3 \mathrm{~mm})$, while the male $(2,5 \mathrm{~mm})$ is smaller ($3,0-3,3 \mathrm{~mm}$). The dorsal plate almost completely conceals the $4^{\text {th }}$ legs in the American species while in the present material the $4^{\text {th }}$ legs are dorsally conspicuously visible, while the tips of the 5 th legs can also be seen. The ist maxilla of the female of L. ecclesi is more slender, and armed with a single terminal and 2 subterminal spines, while in L. paenulatus the ist maxilla has 2 terminal spines, plus another one third the length from the base. The 2nd leg of the female of L. ecclesi lacks the heel-like structure found in L. paenulatus while the male of the latter species lacks a spinose exopod, as found in L. ecclesi. These subtle differences may reflect differences within separate populations of the same species, or may indicate a specific separation. It would be of interest in this respect, to ascertain the amount of contact between the American and South African populations of the host species. Until more material becomes available, it would seem best to separate the present species.

Lernanthropus sarbae n. sp.

(Figs 21 $a-c, 22 a-i$)

Description

ㅇ. Head $\frac{1}{4}$ total length. 2nd thoracic segment forms 'neck'. 3rd thoracic segment fused with $4^{\text {th }}$ and genital segment, segments indicated by slight lateral indentations. Dorsal plate forms large almost circular shield posteriorly. Genital segment with small lateral knob at point of attachment of egg sacs. Abdomen small, rounded. ist antenna dorsally visible, indistinctly 7 -segmented, with 8 or 9 terminal setae. 2nd antenna 2 -segmented, basal segment about twice length of terminal segment, broadly tapering, terminal segment short, with stout striated apical process. ist maxilla bilobed, inner lobe short, with single terminal spine, outer lobe elongate, with 2 terminal spines. 2nd maxilla 3 -segmented, terminal segment short, armed with numerous spines, median segment slender, with single distal spine. Maxilliped 2 -segmented, basal segment with tiny spine on inner surface, distal segment short, with hooked terminal process. ist leg biramous, exopod consisting of single segment with 5 strong terminal spines, endopod of single segment and distal bristled spine, short setose process at base. 2nd leg biramous, exopod of single segment with 4 distal spines, endopod of single segment. 3rd legs lamellar, curved ventrally. $4^{\text {th }}$ legs consisting of 2 elongate slender processes, fused basally for short distance. 5th leg consisting of tiny digitiform process. Caudal rami short, tapering.
0^{7}. Slightly shorter than q, head about $\frac{1}{3}$ total length. ist antenna as in φ. 2nd antenna 2 -segmented, basal segment broadly tapering, with 2 blunt processes on inner surface near base. Distal segment short, with strong striated falcate process terminally, and short spine on inner margin. ist and 2nd maxilli as in $\%$. Maxilliped 2 -segmented, basal segment broad, with tiny spine

Fig. 21. Lernanthropus sarbae n. sp. a. female in ventral view; b. female in dorsal view; c. male in dorsal view.
on inner margin, terminal segment short, with curved striated distal process, with short spine on inner margin. Ist thoracic leg as in $\%$. 2nd thoracic leg biramous, exopod somewhat expanded, endopod of single tapering bristled segment, bearing short terminal seta. 3rd thoracic leg situated laterally, biramous, inner ramus shorter than outer. 4 th legs as in \circ. Caudal rami elongate, almost equal in length to genital segment and abdomen.

Material

I ovigerous + I \&, I $\widehat{\jmath}$, from Rhabdosargus sarba, Durban. Holotype and allotype S.A.M. Ai3020, paratype S.A.M. Ai 3056 . Total length $\& 3,0 \mathrm{~mm}$, ${ }^{1} 2,1 \mathrm{~mm}$.

Fig. 22. Lernanthropus sarbae n. sp. a. ist antenna, q; b. 2nd maxilla,,q; c. maxilliped, $q ; d$. 2nd antenna, $\varphi ;$ e. ist maxilla, $\varphi ; f$. ist thoracic leg, $\varphi ; g$. 2nd thoracic leg, $q ; h$. 2nd antenna, ot; i. 2nd thoracic leg, of.

Remarks

The present species falls into the group characterized in the female by the possession of a large almost circular extension of the dorsal plate, the curved lamellar 3 rd legs, and very elongate rami of the 4 th legs, which are fused basally for a short distance. This group includes L. amplitergum Pearse, L. kroyeri Van Beneden, L. giganteus Krøyer, L. chrysophrys Shishido, L. latis Yamaguti, L. eddiwarneri Delamare-Deboutteville \& Nunés-Ruivo, L. rathbuni Wilson, and L. opisthopteri Pillai.
L. amplitergum differs from the present species in the possession of a posteriorly notched dorsal plate in the female, while the 3rd legs of the male have both rami of equal length. L. kroyeri possesses a more rounded cephalothorax than the present species, and the rami of the 4 th legs in both the female and male relatively shorter. L. giganteus in the female possesses dorso-lateral extensions of the dorsal plate, above the bases of the 3rd legs. The 3rd legs of the
male have the rami very unequal, the inner one being a mere papilla. L. chrysophrys is very similar to the present material, but has postero-lateral extensions of the cephalic shield, and a $2 n d$ maxilla rather more spinose.
L. latis in the female has the rami of the 4 th legs relatively shorter than in the present species, and these possess at their tips a spine-covered knob. In the male, the 3 rd and 4 th legs are relatively shorter and also possess spinose apices. There is also a considerable difference in size between the species.
L. eddiwarneri in the female possesses a more squat body than in the present species, and a posteriorly notched dorsal plate, while the abdomen is not dorsally visible.
L. rathbuni in the female has a distal spine on the penultimate segment of the 2nd maxilla and relatively stout caudal rami, and the inner ramus of the ist legs armed with bristles.
L. opisthopteri in the female is a squatter animal and has the carapace extended forward to form 2 rounded lobes. The 4 th legs are more slender than the present species while the 2nd antenna possesses 3 spines, and the 2nd maxilla possesses 2 spines on the middle segment, unlike the present species.

Family Eudactylinidae

Kroyeria carchariaeglauci Hesse
(Fig. 23^{a-c})
Kroyeria carchariaeglauca: Delamare-Debouteville \& Nunés-Ruivo, 1953: 209, fig. 4 Yamaguti, 1963: 162, pl. 187, fig. 2.

Material

I 5 ovigerous $+9+4$ ổ from Prionace glauca, False Bay. Total length $\uparrow 6,3 \mathrm{~mm}$, $\widehat{\text { o }} 5,5 \mathrm{~mm}$.

Previous records
From Prionace glauca W. Pacific, Mediterranean, N.E. America, and from Carcharias milberti and Galeus glaucus, Martha's Vineyard, N.E. America.

Remarks
The present material agrees well with the above descriptions and figures; the only detectable difference is that the abdomen is not obviously segmented.

Nemesis lamna Risso

(Fig. 24)
Nemesis lamna: Wilson, 1932:46ı, pl. 32. Yamaguti, $1963:$ ı67.

Description

ㅇ. Body elongate, cephalothorax longer than broad, with lateral indentations. 4 free thoracic segments more or less of equal length and breadth, with deep gaps between them. Genital segment broader than long, about one-fifth

Fig. 23. Kroyeria carchariaeglauci Hesse. a. female in dorsal view; b. 2nd maxilla, + ; c. 4 th thoracic leg, + .

Fig. 24. Nemesis lamna Risso. Female in dorsal view.

length of preceding free thoracic segment. Abdomen 2 -segmented, distal segment longer than proximal segment. Spermatophores spherical, almost black.

Material

Numerous ovigerous Of, length up to i i mm, from gills of Carcharodon carcharias from False Bay, Cape.

Previous records
From Mediterranean, eastern U.S.A., California, Japan, Argentina, on sharks of the genera Alopias, Carcharias, Carcharodon, Cetorhinus, Isurus, Odontaspis, and Oxyrhina.

Remarks

The greater length, the very obvious lateral indentations, and the width of the 5 th free segment immediately distinguish this species from \mathcal{N}. pallida, the other species recorded from this area.

Family Pseudocycnidae

Pseudocycnoides rugosa n. sp.
(Figs 25a, b, 26a-i)

Description

ist thoracic segment fused with carapace. Latter shield-like, anteriorly narrowed, ist antenna dorsally visible. 2nd thoracic segment well-defined, 3 rd and $4^{\text {th }}$ segments less-well defined, fused with genital segment. 2nd, 3 rd and 4 th segments each with blunt lateral process. 5 th segment indicated only by single lateral seta. Genital segment cylindrical, 5 times longer than wide. Abdomen short, bearing blunt distal spine. ist antenna 9 -segmented, with large blunt spine on 3 rd segment. 2nd antenna 3 -segmented, terminal segment strongly hooked, bearing proximally a small hook, and single strong median spine. Oral tube conical, flanked by ist maxillae. Latter 2 -segmented, terminal segment spine-like, base rounded. 2nd maxilla exterior to ist maxilla, 3 -segmented, basal segment broad, twice thickness of median segment, latter distally curved, terminal segment short, serrate. Maxilliped 2 -segmented, basal segment very broad, roughly oval, outer surface rugose, bearing fleshy rugose process anteriorly, terminal segment slender, strongly hooked, folding against inner surface of fleshy process of basal segment. 2nd thoracic segment with dorso-lateral rounded fleshy process, ventral to which, a large rounded lobe, somewhat rugose, bearing tiny lobe medially. Latter bears 2 single segments representing biramous leg. Outer ramus of latter bearing 2 short terminal spines, inner bearing 2 curved spines. 3 rd thoracic segment similar to 2nd, but rudimentary leg uniramous, bearing strong terminal spine, plus

Fig. 25. Pseudocycnoides rugosa n. sp. ․ . a. female in dorsa view; b. anterior region of female in ventral view.

2 more slender spines. No trace of 4 th legs, 4 th thoracic segment marked by dorso-lateral process.

Material

4 ovigerous 9 아 from Scomberomorus maculatus gills, Durban. Holotype S.A.M. Ai3058, paratypes S.A.M. Ai 3059. Total length ranging from $5,5 \mathrm{~mm}$ to $6,0 \mathrm{~mm}$. Colour red when fresh.

Remarks

The following characteristics of the female place the present material in the genus Pseudocycnoides: Head fused with ist thoracic segment, 2nd thoracic segment free, 3 rd and 4 th segments fused with genital segment, marked by lateral digitiform processes, basal segment of maxilliped with large fleshy process, ist thoracic legs very reduced, biramous, 2nd legs uniramous, 3 rd legs lacking. Two species of this genus have been described, viz. P. scomberomori (Yamaguti 1939), and P. armata (Bassett-Smith 1898).

Fig. 26. Pseudocycnoides rugosa n. sp. \&. a. Ist antenna; b. 2nd antenna; c. ist maxilla; d. 2nd maxilla; e. maxilliped; f. apex of caudal ramus; g. abdomen; h. ist thoracic leg; i. 2nd thoracic leg.
P. armatus possesses a $6-7$ segmented ist antenna which lacks a proximal process, whereas the present species has an $8-9$ segmented ist antenna with proximal process. The former species possesses a slightly rugose maxilliped, with a tooth on the inner margin of the terminal segment, and a small fleshy process on the basal segment. The present species has a very rugose maxilliped, lacks the tooth on the terminal segment, and has a much larger fleshy process.

Family Lernaeoceridae

Lernaeeniscus gonostomae n. sp.
(Fig. $2^{7} a-h$)

Description

Head with 2 lateral unbranched horns, each with bulbous base, tapering, curved, apically pointed. Proboscis large, cylindrical, springing from bases of horns, dorsally with ist and 2nd antennae, distally narrowed. ist antenna

Fig. 27. Lernaeeniscus gonostomae n. sp. q. a. female; b. head region further enlarged; c. Ist antenna; d. 2nd antenna; e. ist maxilla; f. 2nd maxilla; g. 3rd thoracic leg; h. ist thoracic leg.
indistinctly segmented, bearing several elongate plumose setae, 2 of which longer than appendage itself. 2nd antenna 2 -segmented, apically strongly chelate. ist maxilla simple, 2 -segmented, with 2 terminal setae. 2nd maxilla indistinctly 3 -segmented, terminally with flattened hook bearing fine striations on inner surface. Median segment with 2 patches of very fine setae. 4 pairs
of thoracic legs present on ventral surface just below horns. Ist 2 pairs biramous, posterior 3 pairs uniramous. Ist and 2nd thoracic legs with broad protopodite, exopod 2 -segmented, basal segment with single plumose seta on inner margin, distal segment with 2 fringed spines and 5 plumose setae. Endopod 2-segmented basal segment unarmed, distal segment with 7 plumose setae. 3rd and $4^{\text {th }}$ thoracic legs uniramous, rami 2 -segmented, distal segment with 5 plumose setae and single fringed spine. Neck equal in length ro slightly longer than trunk, buried to its base in host, cylindrical. Trunk more or less cylindrical, with very short abdominal region. Egg sacs elongate.

Material

3 ovigerous Holotype S.A.M. Air 75 I, paratypes S.A.M. Aizo3i, Aizi73. Length of trunk 8,5-10,8 mm; neck length approximately in,o-i $4,0 \mathrm{~mm}$.

Remarks

As several descriptions and figures of species described in the nineteenth century are not available, new specific status is given the present species with some trepidation. L. cerberus Leigh-Sharpe possesses horns similar to the present species, but also has a blunt dorsal horn not found in the present species. L. gonostomae closely resembles L. spratta (Sowerby) but does not possess a moniliform neck region, while the proboscis is much larger than in the latter species. L. radiatus (Le Sueur) is variable with regard to the number of horns, and has been recorded with 2 (Wilson 1917: 60). These horns, however, are blunt, as they are not used for actual attachment, but merely for anchoring. Several other differences, including the length of the abdominal region, the segmented nature of the ist antenna, and the maxilliped separate L. radiatus from the present material.
L. anchoviellae Sebastian \& George, 1964, resembles the present species to some extent. The 'neck' of the former species, however, is longer, compared to the length of the trunk, while the head possesses 2 blunt postero-dorsal horns, rather than the 2 tapering and more elongate horns of L. gonostomae. The abdominal region of the latter is hardly developed, while L. anchoviellae possesses a moderately elongate and tapering 'abdomen'.

> Peniculisa furcata (Krøyer)
(Fig. $28 a-e$)
Peniculisa furcata: Leigh-Sharpe, 1934: 28, fig. 26. Shiino, 1956: 602. Yamaguti, 1963: 203, pl. 224 , fig. 3 .

Description

Body elongate, cephalothorax oval, irregular band of black pigment stretching from cephalothorax, through trunk, into posterior processes. 2nd antenna stout, bearing strongly curved hook shielded by disc-like expansion.

Maxilliped 3 -segmented. Four pairs of thoracic legs present, first 3 pairs dorsally visible, $4^{\text {th }}$ pair at proximal end of genital segment. Each leg very reduced, consisting of single short lobe folded on itself with minute hook at apex. Genital segment bearing 2 elongate parallel processes, at least two-thirds length of trunk. Abdomen very short with rounded posterior processes. Caudal rami consisting of minute laminae bearing 4 short setae. Trunk with short lobe ventrally, at base of elongate processes. Egg sacs originate just below short lobes.

Material

6 ovigerous +1 non-ovigerous On Paramonacanthus barnardi, Inhaca Island, Moçambique.

Fig. 28. Peniculisa furcata (Kroyer). a. female in dorsal view; b. 2nd antenna, $\varphi ;$; maxilliped, $\varphi ; d$. ist thoracic leg, ρ; e. genital segment and abdomen in ventral view, $¢$.

Previous records

On Ostracion punctatus, from Indonesia. On Holacanthus sp., from Indian Ocean. On Tetrodon sp., from Ceylon.

Remarks

The present material differs from descriptions of P. furcata only in the possession of the short ventral lobes and the tiny hook at the base of the legs.

Family Pennellidae
Pennella sp.

Material

Numerous 아, from Sei, Fin, and Sperm whales from Donkergat Whaling Station, Saldanha Bay.

Remarks

Most of the present material possesses 3 horns, of varying length, on the head. The head in most cases agrees well with the figures given by DelamareDeboutteville \& Nunés-Ruivo (1953) and Barnard (1955a) for P. crassicornis. The proportion of head length to trunk length is also very variable. In some specimens the neck is about $\mathrm{I} \frac{1}{2}$ times the trunk length, while in others it is up to twice the length of the neck. Using the characters given by Wilson (1917) some of these specimens would agree with P. balaenopterae, while others would agree with P. crassicornis.

A morphometric study of this collection was made in collaboration with Dr P. Best, who collected the specimens. The total length and the lengths of the lateral and nuchal horns, neck, trunk, abdomen, and egg strings were measured. The material appeared to separate into groups but with considerable overlap between them. The groups did not appear to be related either to the variations of head morphology or to the species of their host. Type specimens of species described by Quido were borrowed from the Paris museum for comparison but they could not be satisfactorily related to the present material. No specific status will be given to the present material until a reliable method of distinguishing the species has been established.

Order LERNAEOPODOIDA
 Family Lernaeopodidae
 Brachiella lithognathae n . sp.

(Fig. 29a-g)

Description

ㅇ. Cephalothorax slender, elongate, with slight bulge at base on either side. ist antenna 4 -segmented, terminal segment bearing 3 spines and a blunt projection. 2nd antenna biramous, outer ramus overhangs inner, apically
rounded and slightly roughened. Inner ramus 2 -segmented, apically bearing rounded lobe armed with minute spines, and cluster of 6 large spines. ist maxilla distally with 2 lobes each bearing stout seta. Palp short, bearing 2 stout seta. Mandible with 6 teeth. Maxilliped apically with strong claw and strong subapical claw, spinose pad on basal segment. 2nd maxillae stout, about one-quarter length of cephalothorax, separate, fused at tips. Trunk roughly rectangular, genital process a rounded papilla. 2 small posterior processes present.

万. Cephalothorax with carapace much shorter than trunk, latter broadly rounded, 2nd maxilla and maxilliped large, prehensile. Length o,6 mm.

Fig. 29. Brachiella lithognathae n. sp. a. female; b. male; c. ist antenna, q; d. 2nd antenna, q; e. Ist maxilla, $\varphi ; f$. maxilliped, $\varphi ; g$. posterior genital segment in ventral view, ρ.

Material

2 ovigerous 아 from Lithognathus lithognathus, Milnerton, Cape. 3 ovigerous ¢甲 from Lithognathus aureti, Rocky Point, S.W.A. Holotype and allotype S.A.M. Ai 3030, paratypes S.A.M. Ai 306o, Air 792.

Remarks

Of the species of Brachiella possessing a relatively elongate cephalothorax and 2 tiny posterior processes on the trunk, the present species most closely resembles B. exigua Brian, recorded from Pagellus erythrius from the Mediterranean, from Dentex vulgaris from Mauritania, and from Merluccius sp. from the Dry Tortugas. The most obvious differences between these 2 species lies in the size, as the table illustrates. Further differences exist in the 2nd antennae, which in the present species is not as spinose distally as in B. exigua, and in the maxilliped which lacks the strong subapical spination of B. exigua.

		B. exigua	B. lithognathae	
cephalothorax	\ldots	$\mathrm{I}, 90 \mathrm{~mm}$	$4,0 \mathrm{~mm}$	
trunk	.	.	$\mathrm{I}, 47 \mathrm{~mm}$	$3,0 \mathrm{~mm}$
egg sacs	.	.	$1,90 \mathrm{~mm}$	$5,2 \mathrm{~mm}$

Dimensions for B. exigua taken from Nunés-Ruivo (1954).

Lernaeopoda etmopteri Yamaguti
(Fig. $30 a-f$)
Lernaeopoda etmopteri Yamaguti, 1939: 549, pl. 44, figs 104-106. Shiino, 1956: 275, figs 4, 5.

Description

Cephalothorax with dorsal carapace, short, in line with trunk. Latter pear-shaped, $3 \frac{1}{2}-4$ times length of cephalothorax. No distinct neck. No genital process, but 2 sausage-shaped posterior processes present, with a pair of tiny spiniform processes between them. ist antenna 4 -segmented, with 4 terminal setae. 2nd antenna biramous, outer ramus distally rounded, inner ramus indistinctly 2 -segmented, distally bilobed, both lobes bearing spines. Mandible with 7 teeth. ist maxilla distally trilobed, each lobe ending in single stout seta, palp some way below trilobed apex, bearing 3 spines. 2nd maxilla very elongate slender, twice length of trunk, corrugated, distally fused only at tips, bulla small. Maxilliped strongly subchelate, apex strongly hooked, inner margin of basal segment with large finely spinose pad distally, smaller spinose pad proximally, and short spine.

Material
2 ovigerous 아 (one with posterior processes detached) from shark, Etmopterus sp., taken west of Cape Point, in 450 metres. Length of cephalothorax + trunk $12,6 \mathrm{~mm}, 8,0 \mathrm{~mm}$. Length of 2 nd maxilla $22,0 \mathrm{~mm}, 8,0 \mathrm{~mm}$.

Fig. 30. Lernaeopoda etmopteri Yamaguti. a. female; b. mandibular apex; c. Ist antenna, q; d. 2nd antenna, $+;$. . ist maxilla,,$f ; f$. maxilliped,,f.

Previous records

On Etmopterus lucifer, from Japan.

Remarks

The present material agrees well with both Yamaguti's and Shiino's descriptions, especially with regard to the appendages. Slight differences do exist. The 2nd maxilla of the present material is far more elongate than that figured by Shiino. The Japanese material, however, is described as wrinkled;
possibly the 2nd maxillae were contracted, while in the present material they are fully relaxed. The somewhat lobose appearance of the trunk as figured by Shiino may also be due to contraction.

Schistobrachia ramosa (Krøyer)

(Fig. 31)
Schistobrachia ramosa (Krøyer), Kabata, 1964: 99.
Charopinus ramosus: Scott \& Scott, 1913: 191, pl. 55, figs 6, 7. Yamaguti, 1963: 253, pl. 272, fig. 3 .

Material

3 ovigerous $9 \not+$ from Raia batis, Table Bay. Total length approximately 9,o mm.

Previous records

On Raia clavata and R. maculata, from Irish and North Sea. On R. radiata from Iceland and Barents Sea. On R. scabrata from Canada.

Fig. 31. Schistobrachia ramosa (Krøyer). Female.

Remarks

The 2nd maxillae, which are distally fused, and each split into 2 slender 'fingers' easily identify this species. This would seem to be the first record of the species from the Southern Hemisphere.

Clavellisa cf. ilishae Pillai

(Fig. 32a-f)

Description

Cephalothorax extremely elongate, slender, of uniform thickness. Trunk regularly oval, twice as broad as long. ist antenna indistinctly 3 -segmented, armed with 7 setae. 2nd antenna biramous, outer ramus broadly rounded, bearing 3 setae, inner ramus shorter and more slender than outer, with 4

Fig. 32. Clavellisa cf. ilishae Pillai. a. female; b. maxilliped, \circ; c. 2nd antenna, P; d. ist antenna, f; e. ist maxilla, $\varphi ; f$. trunk and 2nd maxillae, φ.

apical setae. Ist maxilla with 3 terminal curved spines, palp with 2 curved spines. 2nd maxillae springing from trunk, some distance from base of 'neck', separate, but apically fused into bulla. Maxilliped 2 -segmented, terminal segment curved, with strong apical hook and numerous short spines on inner margin, bearing one strong seta. Egg sacs globular, with small prominence between them, representing fused anal laminae.

Material

3 ovigerous $ㅇ+1$ from gills of Sardinops ocellata, False Bay.

Dimensions: breadth of trunk	I, 0 mm	o, 8 mm	o,8 mm
egg sacs	0,4 mm	0,3 mm	0,3 mm
cephalothorax length	2,0 mm	2,5 mm	I,5 mm

Remarks

The present material closely resembles C. ilishae described from Ilisha filigera and Euplatygaster indica from India. The dimensions and appendages agree well with Pillai's description (1962:79), while a few differences do exist. The egg sacs of the present material are spherical, while C. ilishae possesses pyriform sacs. The present material also lacks the 2 pairs of tubercles, each bearing a seta, on the anterior border of the trunk, as well as the cylindrical process adjacent to the anal laminae. These differences hardly seem to warrant the erection of a new species.

Clavellopsis appendiculata Kirtisinghe

(Fig. 33^{a-c})
Clavellopsis appendiculata Kirtisinghe, 1950: 84, figs 40-43. Pillai, 1968b: 129, figs 7, 8.
Isobranchia appendiculata Heegaard, 1947: 239, figs i-4. Yamaguti, i963: 260, pl. 287, fig. i.

Description

ㅇ. Cephalothorax cylindrical, elongate, dorsally flexed. 2nd maxillae completely fused, bulla cup-like. Trunk pear-shaped, slightly dorso-ventrally flattened. 2 dorsal posterior processes situated laterally, 2 ventral processes situated closer to midline. ist antenna 4 -segmented, bearing 3 terminal setae and single short spine. 2nd antenna biramous, outer ramus apically rounded, inner ramus of I segment with single apical spine. Maxilliped subchelate, with strong terminal hook-like claw, and serrated region on inner basal area. Basal segment with short spine on inner margin.
0. Ist antenna 3 -segmented, with 3 terminal setae and i short spine. 2nd antenna biramous, inner ramus 4 -segmented, terminal segment with large curved spine, smaller accessory spine, and row of tiny curved spines. Outer ramus indistinctly 3 -segmented, terminal segment rounded, bearing single short spine.

Material

2 ovigerous 오, I ${ }^{\lambda}$ from Chirocentrus dorab, Durban. $\&$ length cephalothorax 2,0 mm, length trunk + posterior processes $3,6 \mathrm{~mm}$.

Previous records
From Chirocentrus dorab, Iranian Gulf.

Fig. 33. Clavellopsis appendiculata Kirtisinghe. a. female; b. 1st antenna, ${ }^{\star}$; c. 2nd antenna, ${ }^{\star}$.

Family Naobranchiidae

Naobranchia pritchardae n. sp.
(Fig. 34^{a-c})

Description

Cephalothorax elongate, slender, only slightly longer than distance from base of cephalothorax to tip of egg sacs. Head demarked by slight constriction. ist antenna indistinctly 3 -segmented with stout apical spine. 2nd antenna bilobed, each ramus consisting of single segment with distal spine. Maxilliped 2 -segmented, terminal segment a strong curved hook with accessory spine and tiny spine near base. Buccal cone flanked by rounded striated process. Egg sacs lateral, trunk broad, each side with 3 slender elongate processes embracing egg sacs, I dorsal pair, i ventro-lateral pair, i ventral pair. Egg sacs extend both anterior and posterior to oviduct. Abdomen with single pair of slender caudal rami, enclosed in membranous sac, which also encloses egg sacs and trunk processes. Abdomen situated at about midpoint of length of egg sacs,
deep notch between latter. 2nd maxillae form 2 basally fused bands, on ventral surface of trunk.

Material

2 ovigerous 오, from Pomadasys operculare, Durban. Holotype, S.A.M. Ai3042, paratypes S.A.M. Ai 3063. Total length $4,0 \mathrm{~mm}$, cephalothorax length $2,0 \mathrm{~mm}$.

Fig. 34. Naobranchia pritchardae n. sp. a. female in lateral view; b. dorsal view of trunk, \mathcal{q}; c. maxilliped, \circ.

Remarks

Of the 15 known species of the genus Naobranchia, the present material most closely resembles three species described by Nunés-Ruivo, in 1963, viz. \mathcal{N}. pagelli, \mathcal{N}. sargi and \mathcal{N}. smaridis. These three species from West Africa, as with the present species, possess 3 pairs of processes on the trunk. \mathcal{N}. pagelli, does not possess a posterior notch between the egg sacs, and is about twice the length of the present species. Neither \mathcal{N}. sargi nor \mathcal{N}. smaridis was an ovigerous specimen, and the presence or absence of a posterior notch can thus not be
determined. Neither possesses the strong 'shoulders' of \mathcal{N}. pritchardae, while both are somewhat larger than the latter. They also differ in general proportions. \mathcal{N}. smaridis has a cephalothorax about twice the length of the trunk, \mathcal{N}. sargi I $\frac{1}{2}$ times the length of the trunk, while in the present species the cephalothorax is less than $\mathrm{I} \frac{1}{2}$ times the length of the trunk.

The species is named for Dr Mary-Lou Pritchard of the University of Nebraska, who collected it, along with numerous other parasitic copepods, for the South African Museum.

Family Sphyriidae

Lophoura elongata n. sp.
(Fig. 35^{a-d})

Description

Cephalothorax very elongate, narrow. Neck shorter than cephalothorax, but of same thickness, bearing lobed and knobbed process distally. Genital segment flask-shaped, bearing posteriorly a median raised process flanked by oviduct openings. Single pair of processes bearing numerous sausage-shaped lobes attached medially to oviducal openings.

Fig. 35. Lophoura elongata n. sp. a. female, specimen A; b. lobed process further enlarged; c. female, specimen B ; d. lobed process further enlarged.

Material

2 아 from Synaphobranchus bathybius, off Cape Point. Cephalothorax apex missing in both cases. Holotype S.A.M. Air802, paratype S.A.M. Ai 3064.

		Specimen A	Specimen B
remains of cephalothorax	$47,0 \mathrm{~mm}$	-	
length of neck	\ldots	$23,0 \mathrm{~mm}$	$22,0 \mathrm{~mm}$
length of trunk	\ldots	$15,0 \mathrm{~mm}$	$25,0 \mathrm{~mm}$

Remarks

Of the seven species of Lophoura mentioned and figured by Yamaguti (rg63) the cephalothorax is never more than 10 times longer than wide. In this character the present material differs markedly, having the cephalothorax at least 30 times longer than wide. In the structure of the knobbed process situated at the distal end of the 'neck', the present material resembles L. tripartita and, to a lesser extent, L. edwardsi in some of the variations figured by Nunés-Ruivo (1954: fig. 5). The knobbed process of L. tripartita is spikier and more branched than the present material (Wilson 1935: fig. 75). L. magna (Szidat 197I) possesses a relatively short cephalothorax, although the neck and trunk resemble L. elongata. L. laticervix (Hewitt 1964) has a short, stout neck, while the knobbed process at the base of the cephalothorax resembles the present material to some extent.

Summary

A systematic account of South African parasitic Copepoda is given which supplements and revises earlier work. A catalogue of all the species of parasitic Copepoda in the South African Museum is provided. Full descriptions and figures are given of species new to science and descriptions are also given of species newly recorded from South Africa. The following new species are described: Gunenotophorus blaizei, Caligus penrithi, Lepeophtheirus lalandei, Lepeophtheirus natalensis, Lernanthropodes natalensis, Lernanthropus ecclesi, Lernanthropus sarbae, Pseudocycnoides rugosa, Lernaeeniscus gonostomae, Brachiella lithognathae, Naobranchia pritchardae and Lophoura elongata.

Agknowledgements

We thank the many collectors of specimens who made the present work possible. We are particularly grateful to Dr Mary-Lou Hanson Pritchard who collected most of the material described here. We are grateful to Dr P. A. Hulley for checking the names of host fishes in this paper. We thank the South African Council for Scientific and Industrial Research for grants to the second author enabling the employment of Mr Leiserowitz who prepared preliminary drawings of the material.

$\begin{array}{r} \mathrm{A}_{1} 3 \mathrm{O} 25 \\ \mathrm{~A} 852 \end{array}$	Holotype \& allotype Paratypes
A7607 Syntypes	
Ai3009	
Ai 2591 Syntypes	
$\begin{array}{r} \text { Ai } 59^{2} \\ \text { Ai } 3005 \end{array}$	
Ais 3006	
Ail 790	
Ais 3007	
Ais 3008	
Ais 3045	
A7612	
A76i2	
Ai3037	Holotype \& allotype
Ai3038	Paratypes
Ai3022	
Ais 3023	
Ai 3047	
Ais96	
Ais 3024	
Ais ${ }_{3} 46$	
A7608	

Type Material

Cat. No.
A12713
A5977
A_{2096}
$\mathrm{~A}_{1} 3039$
$\mathrm{~A}_{1578}$
$\mathrm{~A}_{1579}$
$\mathrm{~A}_{2097}$
Al_{13049}
$\mathrm{Al}_{1304 \mathrm{I}}$
A_{3604}
$\mathrm{~A}_{13040}$

Material	Locality	Host
I ovig. ${ }^{\text {+ }}$	Lüderitzbucht	Amphipholis squamata
1 ovig. $\overbrace{}^{+}$?	Polychaete
299	St. James	Pyura stolonifera
19	Port Elizabeth	Ascidian
1 아	St. James	Pyura stolonifera
8ㅇํ	St. James	Pyura stolonifera
3 39	St. James	Pyura stolonifera
I ovig. ${ }^{\text {+ }}$	Cape St. Blaize	Gynandrocarpa unilateralis
1 ovig. ${ }^{\text {P }}$	Cape St. Blaize	Gynandrocarpa unilateralis
4 ovig. $9+$	Still Bay, Cape	Ascidian
	Port Elizabeth	Ascidian
10 ovig. +25 ¢¢	False Bay	Seriola lalandi
1 ovig. + iot, ió	Durban	Pomatomus saltator
3 3¢	Chinde, P. E. A.	Arius acutirostris
I ovig. +2 ¢f	Durban	Caranx djedabae
6 ovig.	Cape Town	Thunnus obesus
	Cape Town	Euthynnus pelamis
1 ovig.	Algoa Bay	Anchoviella holodon
I ovig. + ¢, $1{ }^{\text {a }}$	Table Bay	Pachymetopon blochii
1 ovig. +3 ¢of, 1 ơ	Kalk Bay	Seriola lalandi
1 ovig. 우	Rocky Pt, S.W.A.	?
1 아	Torra Bay, S.W.A.	?
1 ovig. ${ }_{\text {¢ }}$	Möwe Bay, S.W.A.	Chorisochismus dentex
1 아	Möwe Bay, S.W.A.	Blennius cornutus
2 ovig. ㅇ¢	Möwe Bay, S.W.A.	Clinus superciliosus
1 ovig. +2 29\%	Swakopmund, S.W.A	Blennius cornutus
2 ovig. 9 ¢	Saldanha Bay	Clinus superciliosus

Type Material
Paratypes
Holotype \& allotype
Syntypes

Species

*Caligus penrithi n. sp.

Caligus tetrodontis Barnard

Lepeophtheirus brachyurus Heller Lepeophtheirus insignis Wilson
*Lepeophtheirus lalandei n . sp.

Lepeophtheirus lichiae Barnard
*Lepeophtheirus longispinosus Wilson

Lepeophtheirus plotosi Barnard

Orthagoriscicola muricatus (Krøyer)
Philorthagoriscus serratus (Krøyer)
Type Material

Species
Family Euryphoridae
Alebion carchariae (Krøyer)
*Elytrophora hemiptera Wilson
Gloiopotes watsoni Kirtisinghe
Family Pandaridae
Achtheinus dentatus Wilson
Achtheinus dentatus Wilson
Achtheinus cf. pinguis Wilson
Dinematura latifolia Steenstrup \&
Lütken
Type Material

Locality	Host
False Bay	Prionace glauca
Off Slangkop	Prionace glauca
Off Cape Columbine	Torpedo nobiliana
West of Slangkop	Torpedo sp．
Durban	Carcharodon carcharias
？	Sphyrna zygaena
False Bay	Carcharodon carcharias
Durban	Carcharinus sp．
Three Anchor Bay	？
Table Bay	Odontaspis sp．
False Bay	Galeorhinus galeus
Sea Point	Dogfish
Natal	Sphyrna zygaena
Durban	Stegostoma sp．
Natal	？
Milnerton	Rhincodon typus
Milnerton	Rhincodon typus
Off Slangkop	Prionace glauca
West of Slangkop	Carcharodon carcharias
Off Slangkop	Isurus oxyrhynchus
Durban	Odontaspis sp．
？	Isurus sp ．
Off Cape Point	Carcharinus obscurus
Table Bay	Odontaspis sp．
？	Scoliodon palasorrah
Durban	Scoliodon sp．
Table Bay	Skate
$34^{\circ} 23^{\prime} \mathrm{S}, 18^{\circ} 40^{\prime} \mathrm{E}$	Skate
Table Bay	Odontaspis sp．
？	Isurus sp．
Durban	Isurus sp．
Off Cape Point	Isurus sp．
Off Slangkop	Isurus oxyrhynchus

Species	Material
Echthrogaleus coleoptratus（Guérin）	$\begin{aligned} & \text { I ovig. } \frac{+}{} \\ & \text { I } \end{aligned}$
＊Echthrogaleus torpedinis Wilson	I ovig．우 3 ovig．우
$\mathcal{N e s i p p u s ~ a l a t u s ~ W i l s o n ~}$	sev．ovig．아 sev．fof \＆őơ sev．ovig． 9 ¢
Pandarus bicolor Leach	
Pandarus cranchii Leach	$\begin{aligned} & \text { io ovig. }+ \text { iqt } \\ & \text { i } 4 \text { ovig. }+99 \% \\ & \text { iq } \end{aligned}$
Pandarus smithi Rathbun	```6 ovig. +5ᄋ 5 ovig.+2Oq 2%% I ovig.+2早早 I6 ovig. ᄋ+ 8 ovig. +4%ᄋ 7 ovig. +4!% Sev. 아 & đơ` 2 &% I ovig. &```
Perissopus dentatus Steenstrup \＆Lütken	3 ovig．우
Family Trebiidae	
Trebius caudatus Krøyer	$\begin{aligned} & 13 \text { q } 9+ \\ & \text { If } \end{aligned}$
Family Anthosomatidae	
Anthosoma crassum（Abildgaard）	sev．아 \＆ठ̋ ${ }^{\text {® }}$ sev．아 \＆ő ${ }^{\text {on }}$ sev． 1 \＆\＆\＆す̋ ${ }^{\text {on }}$ sev．아 \＆ठ「0 sev．ㅇํ \＆ơo

Type Material
Holotype
Holotype \& allotype

Paratypes
Holotype \& allotype
Paratype
Syntypes

$\mathrm{Al}_{1} 3058$
AI3059

* Lernanthropodes natalensis n . sp .
*Lernanthropus corniger Yamaguti
*Lernanthropus ecclesi $\mathrm{n} . \mathrm{sp}$.
*Lernanthropus sarbae n. sp.
Family Dichelesthiidae
Family Eudactylinidae * Kroyeria carchariaeglauci Hesse * Nemesis lamna Risso
Family Pseudocycnidae Pseudocycnoides rugosa n. sp.

Family Lernaeidae

Cardiodectes medusaeus (Wilson)
*Lernaeeniscus gonostomae n. sp.
*Peniculisa furcata (Krøyer)

Locality	Host	Cat. No.	Type Material
False Bay	Balaenoptera physalus	A 7596	
Saldanha Bay	Whale	A5982	
Table Bay	Balaenoptera acutorostrata	A3ioi	
False Bay	Thynnus albacores	Ai3043	
Table Bay	Mola mola	A7595	
Off Cape Point	Makaira indica	AII 788	
Saldanha Bay	Phyester catodon, Balaenoptera borealis, Balaenoptera physalus		
Table Bay	Genypterus capensis	Ai 2592	Syntypes
Table Bay	Genypterus capensis	Ais 3048	
Rocky Pt, S.W.A.	Lithognathus aureti	Ais 3030	Holotype \& allotype
Rocky Pt, S.W.A.	Lithognathus aureti	Ais 3060	Paratypes
Table Bay	Lithognathus lithognathus	Ail 792	Paratypes
Table Bay	Raja sp.	Ai3012	
Off west coast	Raja caudaspinosa	Aisor 3	
Off west coast	Raja leopardus	Aisoi4	
Off Cape Point	Etmopterus sp.	Ai 2108	
Off Cape Point	Etmopterus sp.	Ai 3061	
False Bay	Sardinops ocellata	Ais 3032	
False Bay	Sardinops ocellata	Ais 3062	
?	Lithognathus lithognathus	A76io	
Durban	Chirocentrus dorab	Ai 3033	,
?	Lithognathus lithognathus	A76io	
East London	Pagrus nasutus	A8525	
Natal	Sciaena robinsoni	A8527	
West coast	Pachymetopon blochii	Ai 3026	
False Bay	Argyrozona argyrozona	Ai 3027	
False Bay	Chrysoblephus laticeps	Ai 3028	
Table Bay	Pachymetopon blochii	Ai 3029	
Table Bay	Congiopodus torvus	A76II	Syntypes

Family Pennellidae
Family Pennellidae
Pennella balaenopterae K
Pennella crassicornis Steenstrup \&
Lütken
Pennella filosa
Pennella orthagorisci Wright
Pennella sp.
Order LERNAEOPODOIDA
Family Lernaeopodidae Brachiella supplicans Barnard

* Brachiella lithognathae n. sp.
Charopinus dubius Scott
*Lernaeopoda etmopterae Yamaguti *Clavellisa cf. ilishae Pillai

[^0]Eubrachiella sublobulata Barnard
Cat. No. Type Material

+
O

A2015
A 7606
-
Ars93
A2093

Air 807
A_{1}

A8529
A $_{13065}$
A8528
A $_{1} 1776$
A 11777

> Lerneopoda galei Krøyer
Parabrachiella australis Wilson
Naobranchia pritchardae n. sp.
Family Spyriidae
*Lophoura elongata $\mathrm{n} . \mathrm{sp}$.

Sphyrion laevigatum Guérin-Meneville
Sphyrion lumpi (Krøyer)
Subclass Branchiura
Order ARGULOIDA
per
Family Argulidae
Argulus belones van Kamper
Chonopeltis inermis Thiele
Dolops ranarum (Stuhlmann)

References

Bannister, J. L. \& Grindley, J. R. ig66. Balaenophilus unisetus Aurivilius, and its occurrence in the southern hemisphere. Crustaceana 10: 296-302.
Barnard, K. H. 1948. New records and descriptions of new species of parasitic Copepoda from South Africa. Ann. Mag. nat. Hist. (12) 1 : 242-254.
Barnard, K. H. i955a. South African parasitic Copepoda. Ann. S. Afr. Mus. 4I: 223-312.
Barnard, K. H. 1955b. Additions to the fauna list of South African Crustacea and Pycnogonida. Ann. S. Afr. Mus. 43: 1-107.
Barnard, K. H. 1957. Additions to the fauna list of South African Crustacea. Ann. Mag. nat. Hist. (12) 10: 1-12.
Bassett-Smith, P. W. i898. Some new parasitic copepods found on fish at Bombay. Ann. Mag. nat. Hist. (7) $\mathbf{1}: \mathbf{1}-16$.
Bere, R. 1936. Parasitic copepods from Gulf of Mexico fish. Am. Midl. Nat. 17: 577-628.
Bocquet, C. \& Stock, J. H. 1963. Some recent trends in work on parasitic copepods. Oceanogr. mar. Biol. 1: 289-300.
Brian, A. 1934. I Caligus parassiti dei pesci del Mediterraneo (Copepodi). Annali Mus. civ. Stor. nat. Giacomo Doria 57: 152-21 1 .
Brian, A. 1939. Copépodes parasites recueillis par M. E. Darteville á l'embouchure du fleuve Congo. Revue Zool. Bot. afr. 32: 176-198.
Calman, W. T. 1908. On a parasitic copepod from Cephalodiscus. Mar. Invest. S. Afr. 5: 177-184.
Cressey, R. F. 1967a. Genus Gloiopotes and a new species, with notes on host specificity and intraspecific variation (Copepoda: Caligoida). Proc. U.S. natn. Mus. 122 (3600): 1-22.
Cressey, R. F. 1967b. Caligoid copepods parasitic on sharks of the Indian Ocean. Proc. U.S.natn. Mus. 121 (3572): 1-21.
Delamare-Deboutteville, C. \& Nunés-Ruivo, L. 1953. Copépodes parasites des poissons Mediterranéens. Vie Milieu 4: 201-218.
Delamare-Deboutteville, C. \& Nunés-Ruivo, L. 1954. Parasites de poissons de mer ouest africains récoltés par J. Cadenat. II. Copépodes (ıre note). Bull. Inst. fr. Afr. noire (A) 16: 139-166.
Gnanamuthu, C. P. 1948. A new copepod parasite, Clavellisa dussumieriae belonging to the subfamily Clavellinae from the gills of a Madras fish. Proc. zool. Soc. Lond. 117: 748-755.
Heegatard, P. E. 1947. A new lernaeopodid (Isobranchia appendiculata, nov. gen. nov. sp.) from the Iranian Gulf. Dan. scient. Invest. Iran 4: 239-245.
Hewitt, G. C. 1963. Some New Zealand parasitic Copepoda of the family Caligidae. Trans. R. Soc. N.Z. (Zool.) 4: 6ı-II5.
Hewitt, G. C. 1964. A new species of Lophoura (Sphyriidae, Copepoda) from New Zealand waters. Trans. R. Soc. N.Z. 5: 55-58.
Ho, J. S. 1972. South African chondracanthids. Parasitology 65: 147-158.
Illg, P. L. 1958. North American copepods of the family Notodelphyidae. Proc. U.S. natn. Mus. 107: 463-649.
Kabata, Z. 1964. Revision of the genus Charopinus Krøyer, 1863 (Copepoda: Lernaeopodidae). Vidensk. Meddr dansk naturh. Foren. 127: 85-1 12.
Kensley, B. F. 1970. A new species of Caligus from South West Africa (Copepoda, Caligidae). Crustaceana 18: 167-1 72.
Kirtisinghe, P. 1934. Gloiopotes watsoni n.sp. and Lernaeeniscus seeri n.sp. Parasitic copepods of fish from Ceylon. Parasitology 26: 167-1 75 .
Kirtisinghe, P. i950. Parasitic copepods of fish from Ceylon. 3. Parasitology 40: 77-86.
Kirtisinghe, P. ig64. A review of the parasitic copepods of fish recorded from Ceylon with descriptions of additional forms. Bull. Fish. Res. Stn Ceylon 17: 45-1 32.
Leigh-Sharpe, W. H. 1934. The Copepoda of the Siboga Expedition. Part II. Commensal and parasitic Copepoda. Siboga Exped. Monogr. 29b: i-43.
Lewis, A. G. 1967. Copepod crustaceans parasitic on teleost fishes of the Hawaiian Islands. Proc. U.S. natn. Mus. 121: 1-204.
Lewis, A. G. 1969. A discussion of the maxillae of the 'Caligoidea' (Copepoda). Crustaceana 16 : 65-77.
Nunés-Ruivo, L. 1954. Copépodes parasites de poissons. Vie Milieu Suppl. 3: 1 15-138.
Nunés-Ruivo, L. 1963. Parasites de poissons de mer ouest-africains récoltés par M. J. Cadenat. III. Copépodes ($3^{\text {e }}$ note). Genre Naobranchia. Bull. Inst. fr. Afr. noire (A) 25: 1003-1015.

Paterson, N. F. i958. External features and life cycle of Cucumaricola notabilis nov. gen. et sp., a copepod parasite of the holothurian Cucumaria. Parasitology 48: 269-29o.
Pillai, N. K. 196i. Copepods parasitic on South Indian fishes. Part I, Caligidae. Bull. cent. Res. Inst. Univ. Kerala (C) 8: 87-1 30.
Pillai, N. K. 1962a. Observations on the synonymy of Caligus coryphaenae Stp. \& Lutk. Ann. Mag. nat. Hist. (13) 5: 513-528.
Pillai, N. K. 1962b. Copepods parasitic on South Indian fishes families Lernaeopodidae and Naobranchidae. 7. mar. biol. Ass. India 4: 58-94.
Pillai, N. K. 1963. Copepods parasitic on South Indian fishes: Family Anthosomidae-i. 7. Bombay nat. Hist. Soc. 6o: 655-67o.
Pillai, N. K. i968a. Three new species of anthosomid copepods parasitic on South Indian fishes. 7. Parasit. 48: 6ı3-6ı7.

Pillai, N. K. 1968b. Description of some species of Brachiella and Clavellopsis with comments on Isobranchia Heegaard. Crustaceana Suppl. 1: 1 19-1 35 .
Schellenberg, A. 1922. Neue Notodelphyiden des Berliner und Hamburger Museums mit einer Übersicht der ascidienbewohnenden Gattungen und Arten. Mitt. zool. Mus. Berl. $\mathbf{1 0}$: 217-274.
Scott, T. \& Scott, A. 1913. The British parasitic Copepoda. London: Ray Society. (Publications of the Ray Society 95, 96.)
Sebastian, M. J. \& George, K. C. i964. Lernaeeniscus anchoviellae n.sp. (Copepoda- Lernaeidae) parasitic on Anchoviella bataviensis (Hardenberg) with descriptions of its three post-larval stages. 7. mar. biol. Ass. India 6: 235-24o.
Shinno, S. M. 1956. Copepods parasitic on Japanese fishes. 7. Peniculus and Peniculisa. Jap. F. Zool. 11: 593-6o8.
Shino, S. M. 1965. On Cecrops exiguus Wilson found in Japan. Rep. Fac. Fish. prefect. Univ. Mie 5: 381-390.
Stebbing, T. R. R. igoo. South African Crustacea. Mar. Invest. S. Afr. 1: $14-66$.
Stebbing, T. R. R. 1905. South African Crustacea. Part III. Mar. Invest. S. Afr. 4: 21-123.
Szidat, L. 1971. Un nuevo copepodo del genero Lophoura Kölliker (Sphyriidae), parasito de Lepidion euriferus (Pisces, Gadiformes, Moridae) del Atlantico sur cerca de las Malvinas. Neotropica 17: 137-140.
Wilson, C. B. 1907. North American parasitic copepods belonging to the family Caligidae. Parts 3 and 4. A revision of the Pandarinae and Cecropinae. Proc. U.S. natn. Mus. 33: 323-490.
Wilson, C. B. 1908. North American parasitic copepods: new genera and species of Caliginae. Proc. U.S. natn. Mus. 33: 593-627.
Wilson, C. B. 1913. Crustacean parasites of West Indian fishes and land crabs, with descriptions of new genera and species. Proc. U.S. natn. Mus. 44: 189-277.
Wilson, C. B. 1917. North American parasitic copepods belonging to the Lernaeidae, with a revision of the entire family. Proc. U.S. natn. Mus. 53: 1-150.
Wilson, C. B. i921. New species and a new genus of parasitic copepods. Proc. U.S. natn. Mus. 59: 1-17.
Wilson, C. B. 1923. A new species of parasitic copepod from Florida. Am. Mus. Novit. 8o: 1-4.
Wilson, C. B. 1932. The copepods of the Woods Hole region, Massachusetts. Bull. U.S. natn. Mus. 158: i-xix, I-624.
Wilson, C. B. 1935. Parasitic copepods from the Dry Tortugas. Publs Carnegie Instn 452: 327-347.
Wilson, C. B. 1937. Parasitic copepods taken during the third Alan Hancock Expedition to the Galapagos. Allan Hancock Pacif. Exped. 11 (4): 23-40.
Wilson, C. B. 1940. Report on the parasitic Copepoda collected during the survey of the Juan Fernandez Islands, 1916-1917. In: The natural history of Juan Fernandez and Easter Island 3: 69-74.
Yamaguti, S. 1939. Parasitic copepods from fishes of Japan. Part 5. Caligoida III. In: Volumen jubilare pro Prof. Sadao Yoshida. 2: 443-487. Osaka.
Yamaguti, S. i954. Parasitic copepods from fishes of Celebes and Borneo. Publs Seto mar. biol. Lab. 3: 375-398.
Yamaguti, S. 1963. Parasitic Copepoda and Branchiura of fishes. New York; London; Sydney: Interscience Publishers.

Biodiversity Heritage Library

1973. "South African parasitic Copepoda." Annals of the South African Museum. Annale van die Suid-Afrikaanse Museum 62, 69-130.

View This Item Online: https://www.biodiversitylibrary.org/item/127145
Permalink: https://www.biodiversitylibrary.org/partpdf/93276

Holding Institution

Smithsonian Libraries

Sponsored by

Biodiversity Heritage Library

Copyright \& Reuse

Copyright Status: In Copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://www.biodiversitylibrary.org/permissions/

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: Clavellodes pagelli (Kroyer) Clavellopsis fallax (Heller)

 Clavellopsis hostilis (Heller) *Clavellopsis sargi (Kurz)

