A NEW SPECIES OF CALAMOECIA (COPEPODA: CALANOIDA) FROM SOUTH AUSTRALIA, AND COMMENTS ON THREE CONGENERS

by I. A, E, Bayly*

Abstract

Summary BAYLY I, A, Ł, (1984) A new specjes of Calamoecia (Copepoda: Calanoida) From South Australia, and comments on three congeners. Trams. R. Sors S. Ahas. 108(3), 147-154, 13 December, 1984.

Calumoech zeidleri sp.nov., a comparatively large species of Calamoecia, is described trom fresh waters near lake Eyre and Oodnadasta.

Tive Western Austrabian populations of C. Iucasi, which have diverged markedly both strueturally and ecologicalty from pöpulations in the castorn hatf of Auseraliasand in New Zealand, are described in detail. Both populations have an abuomally large body size for this species, and the stutch stze of the females of one is unusually high. A palaeoclinatological explanation for the subspecific divergence of Westen Australian populations of C. lucasi and C. gibbosa from those in the east is presented.

New information is presented on the disicibution of C canberra,

KEI Wokes: Copepoda, Calanoida, Calamoecia, Iresh water.

Introduction

The genus Calamoecia, which contains small non-marine calanoidx, was revised by Bayly (1961, 1962). A Tunthet species was added (Bayly 1979) to bring the total number of deseribed species to 13

During 1981 and 1982 I examined a series of 80 collections of zooplankion made by Mr Wolfgang Zeider of the South Australian Museum (SAM) from inland waters of South Ausiralia and the Northern Territory, Included amongst this material were live collections from the northern part of S.A. (to the north of Oodnadatta and west of Lake Eyre) which contained a highly distinctive undescribed species of Calamoecia, This is deseribed below.

Additionally, two isolated and peculiar populafions of C. Lucas; Brady sampled during the field work associated with the paper of Geddes et al. (1981) on saline lakes in Western Australia (but not recorded in that work because of their occurrence in (resh waters) and passed on to me are deseribed.

Possible reasons for the east-west divergence in the morphology of C. lucasi and C, gibbosa are discussed.

Finatly, new information is presented on the distribution of C. canberra Bayly hitherio known from few localities but which oecurred in 15 of the Zeidler collections.

Although tyo species of Callamoecia occur in saline waters, and satine waters are common in those general regions of Ausiralia referred to in this papcr. all Coulumocciu material discussed below canc from fresh waters,

[^0]Calamoecia zeidleri sp.nov. FIGS 1-2

Type Material: Holotype s ${ }^{\circ}$, allotype \&, paratypes $30{ }^{\circ}, 30$ f(from swamp $29^{\circ} 57^{\prime}$ S., $136^{\circ} 14^{\prime}$ E) or Billa Kalina Hstd; holatype and allotype stained with Chlorazol Black, dissected and mounted in balsam on microslides, paralypes preserved in formalin, anmounted in vial: SAM C. 3961-7. Paratypes from dam or William Creek $\left(28^{\circ} 55^{\prime} \mathrm{S}\right.$, $136 " 20^{\prime}$ E.) $30 \pm, 30 \%$, unmounted in formalin in vial; SAM C. 3969-70.

Description of Male:

Size. (a) Swamp It Billa Kalina Hstd: mean (n 10) length to end of uropods (formerly furcal rami) 1.10 mm . (b) Dam 16 km N . Willian Creek: mean length as above 0.99 mm .
tidth legs (Figs 1A-1B). Right exopod with comparatively short proximal segment, middle segment with tooth on inner edge slightly proximal of mid point and second tooth on outer distat edge near point of insertion of seta on posterior face (Pjg , 1A), distal claw strongly bent inwards through approximate right-angle (as in C. gibbosa) then curving outwards towards distal extremity, Incking secondary spur (present in seven other species of Calamoecia) on inner proximal edge of claw; righi endopod 2 -segmented, proximal segment onty atoout $1 / 2$ length distal segment, distal segment with highly disliuctive thumb-like spur arising at outer distal corner and orientated at right-angles to long axis of segment, with two long spines at distal extremity, that next to "thumb" ("index finger") strongly curved near base, minute spine occasionally present at inner distal cornet near base of inner distal spine (Fig, 1A); left exopod 2-segmented on anterior face (Fig. IB) but line of segmentation largely obseured on posterior face (Fig. IA), distal

Fig. 1. Calamoecia zeidleri sp.nov. A and B, ${ }^{*}$ fifth legs, showing posterior and anterior aspects, respectively; C, $\$$ fifth leg; D and E, lateral aspect of $\$$ urosome showing, respectively, the ventral bulge, or genital operculum, closed and open; F, $\$$ urosome, ventral aspect.
segment with conspicuous seta inserted short of extremity on anterior face and with elongate concavity on posterior face near inner edge; left endopod 1 -segmented expanded distally and typically with five spines-two (1 long, 1 short) terminal, two subterminal, and one on outer edge $1 / 6$ of total length of segment from distal extremity.

Description of Female:

Size. (a) Swamp nr Billa Kalina Hstd: mean ($\mathrm{n}=$ 10) length to end of uropods 1.42 mm . (b) Dam 16
km N. William Creek: mean length as above 1.26 mm.

Fifth legs (Fig. 1C). Terminal exopod segment with five spines, largest or terminal spine only slightly longer ($c a 1.3 \mathrm{x}$) than segment itself (compare with most species of Calamoecia in which terminal spine $>2 \mathrm{x}$ length segment); endopod 1 -segmented bearing eight (or occasionally seven) setae, seta immediately to inside of terminal seta very short and spine-like.

Genital segment (Figs 1D-1F). No lateral outgrowths (Fig. 1F) as in C. gibbosa, C. clitellata and W.A. forms of C. lucasi, genital operculum with distinct posterior "nipple" as in C. lucasi, C. australica and C. canberra.

Remarks: This species is easily recognised by the large outer distal spur on the right endopod of the fifth legs in the male, and by the relatively short terminal spine on the terminal exopod segment of the fifth legs in the female. In the latter feature only C. salina, in which the terminal spine is about $1.6 x$ the length of the segment bearing it, approaches C. zeidleri. In C. salina, however, the terminar exopod segment of the female fifth legs bears only two spines (ef five in C. zeidleri).

The body size of the female of this species is relatively large for Calamoecia and may be compared with that of the female of C. attenuata.
C. zeidleri coexisted with C. canberra Bayly at all five localities and also with Boeckella triarticulata (Thomson) at three of the five localities. The size relationships existing for one situation in which C. zeidleri was one of three coexisting calanoids, and another in which it was one of two, are shown in Table 1. There was no overlap in the mean lengths of the adults of different species.

Congeneric occurrences are not common for Calamoecia in Australasia as a whole (cf. Bayly \&

Table 1. Size relationships of coexisting calanoids,

Species and sex	Swamp near Billa Kalina H.S.		Dam 16 km N .William Creek	
	$\begin{gathered} \hline \overline{\mathrm{x}}(\mathrm{n}=10) \\ \text { length }(\mathrm{mm}) \end{gathered}$	$\overline{\mathrm{x}}$ \% length	$\begin{gathered} \overline{\mathrm{x}}(\mathrm{n}=10) \\ \text { length (mm) } \end{gathered}$	$\overline{\mathrm{x}}$ ¢ length
		$\overline{\mathrm{x}}$ of length		$\overline{\mathrm{x}}$ of length
Boeckella triarticulata				
(Thomson)		1.17		
female	1.81			
male	1.55			
Calamoecia zeidleri sp.nov. female male		1.29		1.27
	1.42		1.26	
	1.10		0.99	
C. canberra Bayly female male		1.16		1.13
	0.88		0.77	
	0.76		0.68	

Williams 1973, table 6:3). However, they are not uncommon in the far south-west of W.A. where C. atrenuata may coexist with a smaller Calamoecia such as C. tasmanicu or C. elongata.

Table 1 shows that the ratio (mean female length):(mean male length) for C zeidleri is relatively high (1.27-1.29) for Calamoecia (cf. Bayly 1978, table 1, group C).

Material Exarnined: S.A.: Swamp (Devils Playground) 6 km S.E. of Billa Kalina Hstd ($29^{\circ} 55^{\circ}$ S., $136^{\circ} 11^{\prime}$ E.), 450°, $409.5 \times$ xii.1974; dam 16 km N . of William Creek ($28^{\circ} 55^{\prime} \mathrm{S}$., $136^{\prime \prime} 20^{\prime}$ E., 45 s, 40 \%. May 1976; dam 35 km N . of William Creek, 10. May 1976; Alberga Creek road crossing $47 \mathrm{~km} \mathrm{~N}, \mathrm{~N} . \mathrm{W}$, of Oodnadatta, $10^{\circ}, 3 \mathrm{v} .1976$; waterhole 5 km N. of Mt Sarah ($26^{\circ} 55^{\prime}$ S., $135^{\circ} 20$ E.), 2d, 4.v.1976; all five coll. W. Zeidler. The distribution is shown in Fig. 2.

Fig. 2. Distribution of Culamoecia zeidleri sp.nov.

Isolated Western Australian populations of Calamoecia and their marked morphological divergence

Calamoecia lucasi Brady

As shown by Bayly \& Williams (1973, Fig. 6:3), and as indicaled in Fig. 3, most Australian popula-

Fig. 3. The main, eastern areas of Australia occupied by Calamoecia lucasi and C, gibbosa and the isolated W.A. populations of these species. The arrows indicate extensions to previously known distributions-not directions of dispersal.
fions of C. lucasi are restricted to the eastern half of the continent (the species also occurs in the North Island of New Zealand), However, the existence of some isolated populations in what are almost certainly temporary waters in arid regions of W.A. is now known. These W.A. populations have diverged remarkably, both morphologically and ecologically, from those in the eastern half of Australia and N,Z. The morphological divergence is evident with respect to both body size, which is much larger, and the details of secondary sexual characteristics. If one of these W.A. populations was transported to N.Z., I doubt if it would be immediately recognised as C lucasi when first encountered there. The possibility exists that breeding experiments would justify the W.A. form being treated as a separate species. However, I consider the aberrant W.A. populations are properly referable to C Iucasi.

(a) The Cue Population FIGS 4A-D

Material Examined: W.A.: 209, $10 \approx$ pond close to Nallat ($27^{\circ} 16^{\prime} \mathrm{S}, 117^{\circ} 59^{\prime} \mathrm{E}$) 21 km N.N.E. of Cuc, coll. M. C. Geddes et al., viii 1978.

Body Size (mean prosome length). Female, 0.96 mm ($\mathrm{n}=10$); male $0.86 \mathrm{~mm}(\mathrm{n}=10)$.
Mate Fifih Legs (Figs. 4A and 4B). These differ from those of eastern populations as follows:
(1) the proximal segment of the right exopod has no projection at the inner distal corner (compare Figs. 6A and 6B)

Fig. 4. Calamoecia lucasi Brady from population near Cue, W.A. A and B, δ fifth legs, showing posterior and anterior aspects, respectively; C, $\&$ fifth leg; D, q genital segment (and extensions of last prosomal segment), dorsal aspect.
(2) there is a strong projection on the inner edge of the middle segment of the right exopod which is not seen in eastern populations
(3) the distal segment, or terminal hook, of the right exopod is more strongly bent
(4) the middle segment of the right endopod is enlarged so as to present a semicircular outer edge (5) the left endopod invariably has an armature of 5 spines (2 terminal, 3 sub-terminal) instead of the usual four spines; however, variation in spine number from two-five has already been documented (Bayly 1961)
(6) there are quite strongly developed denticles at or near the distal extremity of the left exopod

Female Fifth Legs (Fig. 4C). The distal exopod segment differs from that of eastern populations in bearing six spines instead of the usual five.

Female Genital Segment (Fig. 4D). This differs from that of eastern populations in having a more pronounced lateral bulge on the left side (compare Figs 6 E and 6 F).

Clutch Size. The mean number of eggs was an unusually (for this species) high 44 (Table 2).
Remarks: C. lucasi was the sole calanoid present in the zooplankton collection from this site which had a maximum depth of about a metre, a very high turbidity, and a T.D.S. value of $41 \mathrm{mg} / \mathrm{l}$. The temporary nature of the pond was emphasised by the presence in the collection of an abundance of conchostracans. Also present were ostracods, cyclopoids, Chydorus and Keratella.

(b) The Population Near Lake Grace

 FIGS 5A-5FMaterial Examined: W.A.: $100^{\circ}, 10$ ㅇ, roadside pool on northern side of road, 3.5 km W. of Lake Grace township, coll. M. C. Geddes et al., viii. 1978 .
Body Size (mean prosome length). Female, 1.00 mm ($\mathrm{n}=10$); male, $0.93 \mathrm{~mm}(\mathrm{n}=10)$.

Male Fifth Legs (Figs 5A-5C). These differ from those of eastern populations as follows:
(1) the proximal segment of the right exopod has a more strongly developed projection at the inner distal corner
(2) the distal segment, or terminal claw, of the right exopod is more strongly bent, as for the Cue population
(3) the terminal segment of the right endopod typically (Figs 5A and 5B) has one or two greatly reduced, or only vestigial, setae, but occasionally (Fig. 5C) a longer seta is present
(4) the left leg has the same peculiarities as described above for the Cue population

Female Fifth Legs (Fig. 5D). These have the same peculiarity as detailed above for the Cue population.

Female Genital Segment (Figs 5E and 5F). This is distinctive in being essentially similar to that described above for the Cue population although the left lateral outgrowth is even more pronounced.

Remarks: Two other calanoid species, Boeckella opaqua Fairbridge and B. robusta maxima Sars, were also present in the collection examined. Both of these species are characteristic of shallow, temporary waters. A T.D.S. value of $980 \mathrm{mg} / \mathrm{l}$ was obtained for a water sample taken from the pool.
(c) C. Iucasi from New Zealand FIGS 6A-6F
Drawings of material collected by the author from Lake Alice ($40^{\circ} 08^{\prime} \mathrm{S}, 175^{\circ} 20^{\prime} \mathrm{E}$) near Marton,

TABIE 2. Length and chutch size of Calamoecia locasi females.

Nature and location of population	$\overline{\mathrm{x}}$ prosome length (mm)		Clutch size	$\begin{gathered} \text { Coeff. var: } \\ \left(0_{0}\right) \end{gathered}$
		$\begin{aligned} & \text { No. Females } \\ & \text { examined } \end{aligned}$	$\overline{\mathrm{X}}$ no. eggs	
(A) IV.4. seasonal temporary-water populutions ${ }^{3}$				
Poot neser 1ake Grace ${ }^{3}$	1.00			
Pond near Cue	0.96	20	44.1	12
(13) N 2. peremmat taitstrine populatioris.				
Lake Ototoa	$0.57{ }^{\text {c }}$		1.8-1.9	
Lake Rotorua	0.65 c		3.34	26^{*}
Inke Rotori	0.64		$2.0{ }^{\text {c }}$	27
Nowell's Lagoond	-	25	13.8	21

[^1]N.L., are included for comparison with the W.A. populations.

Discussion

As shown in Table 2, individuals from these two desert populations of C. Incasi are 50% or more (up 1075%) larget than those belonging to N, Z. populations. This probably underestimates the size discrepancy because the prosome measurements of the N,Z, specimens apparently include the posterolateral "wings" of the last prosomal segment. The type of measurement specified in Table 2 for the W.A. specimens although slower is preferable because of intraspecific variation in the relative degree of development of these wings.
Gigantism in calanoids in Australian desert pools is noted by Mitchell (1984) who referred to Boeckella friarticulato reaching a Jength of up to 3.2 mm in at temporary pool near Lake Eyre. However, Mitchell's explanation, "Organisms in these localities often attain very large sizes due to rupid growth rates [my emphaisis]" seems invalid; in planktonic crustaceans large adul body size is associated with long development lime (slow growth) and both of these correlate with low temperature alone if food is sufficiently abundant (McLaren 1963).

The large clutch size found for the Cue population (Table 2) is in accordance with the principle (Belk \& Cole 1975) that where a calanoid species
occurs in both permanent and temporary waters, populations in temporary waters typically have a larger clutch size than those from permanent waters. A larger clutch size also would be expected in this inslance because a positive correlation between clutch size and female body size generally applies within the Copepoda (Mclaren 1963). It may be noted, however, that in Boeckella symmetrica an increased clutch size in temporary waters (Bayly 1979) does not appear to be accompanied by the striking gigantism reported here for C. lucasi.

Typically, freshwater species of Calamoecia occur in permanent waters (Bayly 1978). The chief exceptions are the W.A. species, C. attentuata and C elongata, W.A. populations of C ampulla, and C. camberra, all of which occur not uncommonly in temporary waters even if they also occur in permanent ones. Maly (1984) confirms that, considering the genus Calamoecia as a whole, it is much less common than Boeckella in temporary pools. Timms (1970, table 12) assessed C. Iucasi as having poorer powers of dispersal in north-eastern N.S.W. than three species of Boeckella that occurred in the same area. Additionally, C lucasi seems not to have been recorded from temporary waters in N.Z. Despite these generalizations concerning the genus Caldmoecia as a whole, and C lucasi in particular, at least two W.A. populations of this species undoubledly are adapted for habitat ephemerality.

Fig. 5. Calamoecia lucasi Brady from population near Lake Grace, W.A. A and B, o' fifth legs, showing posterior and anterior aspects, respectively; C, portion of ot right fifth leg, showing endopod with (for this population) unusually long terminal seta; D, q fifth leg; E and F , ventral and dorsal aspects, respectively, of q. $^{\prime}$ genital segment, showing pronounced outgrowth on left side.
Should the W.A. populations be regarded as relictual in character or relatively recent derivatives from the east? Structural evidence favours the former view; the W.A. populations may be regarded as being more primitive in having a less reduced armature on the fifth legs of both sexes (the armature of the male right fifth endopod of the Lake Grace population excepted). The relatively poor dispersal ability of Calamoecia (Maly 1984), combined with the fact that westerly or south-westerly winds predominate throughout much of the southern half of Australia, would tend also to favour transport from west to east over the reverse.

Calamoecia gibbosa Brehm

A parallel situation exists for this species as for C. lucasi (Fig. 3). For many years C. gibbosa was
known only from south-eastern Australia. It was first described in 1950 from Lake Dulverton in Tasmania. Two further Tasmanian records and one from Flinders Island were added by Bayly (1964), and three mainland records (all lakes at or near Mt Gambier) were added by Bayly \& Williams (1964). Two further unpublished records (a fourth Tasmanian locality and a second one on Flinders Island), making nine in all, were known at the time of preparation of the map presented by Bayly \& Williams (1973) for C. gibbosa showing it restricted to south-eastern Australia. However, in 1977 an isolated population was found at Newmann's Rocks in W.A. (Fig. 3) and described by Bayly (1979) as a new subspecies, C. gibbosa newmannensis.
A previously unpublished record of C. gibbosa gibbosa (incorporated into Fig. 3) is that from Fresh Dip Lake between Beachport and Robe at $37^{\circ} 16^{\prime} \mathrm{S}$., $139^{\circ} 49^{\text {E }}$. (collection 1.xi.1979).

General Discussion of Western Australian Forms of C. lucasi and C. gibbosa

The situation described above for C. lucasi and C. gibbosa is not unlike that recognized by Bayly (1961) for C. tasmanica (Smith), with C. tasmanica tasmanica in the east, and C. tasmanica subattenuata in the west [the position with C. tasmanica is,

Fig. 6. C. lucasi Brady from Lake Alice near Marton, New Zealand. A and B, of fifth legs, showing posterior and anterior aspects, respectively; C, of fifth leg; D, terminal exopod segment of q fifth leg enlarged; E and F, q genital segment, dorsal aspect (different individuals and orientations).
however, more complex than originally supposed (Bayly (979)]. What explanation can be olfered for the subspecific divergence of W.A. poputations of C: Iucasi and C. gibbosa (and C. tasmanica) from those in the castern half of Australia?

In the early Miocene, 20 milhon years age, the environment on itfie southern coast of Australa was subjeet to high humidity that penetrated far into the continett (Bowler 1982). There were extensive freshwater lakes in the interior where now salt lakes dominate, Despite a summer masimum in the rant lall. Bowter (1982) eonsidered that even in winter supplus tovisture prevailed right across the eontineet und inland fogey conditions were common. With such a climate it might be supposed that populations of lteshwater calanuids sueh us (: lueasi and C, gibboso extended freely actoss the continent from east to west (except that marine Irumggressions into the Eucta and Murray basis would have interrupted the continuum along the southern border). Subsequently, however, the development of att iotense zone of aridity in the Vallarbor region and its northward extension seems likely to have split the east-west continuum into two segmens, the easten being somewhal larger than the western onc. In late Miocene times, six million years ago, there was intense seasonal aridity (winters were now dry) across southern Ausiralia reaching a maximum in the Nullarhor region. In the late Pliocene, 2,5 milfion years ago, the present elimatic zonation of Australia develoned for the first time, and by one million yearsage centrat Australia was atready dry without nevessarily being as arid as subsequently (Bowlet 1982). However, there was a major phase during the late Plsistocenc from $30-50$ 000 years B.P., the Mungo lacustrine plase, of lake expansion and (allowing for a teversal of scasonality int prectpitation) it return almost to the conditions described for the carly Miocenc,

The W.A. populations of C. liceus and C g githbosa may be regarded as reliciual, and a product of geographical isolation by arid north-south dissection of a previous east-vest continuum. Buishtich of the arid dissections was the operative onc? It the absence of a fossil recurd we car presenty say linte concerning rates of evolution in caluroid copeprods. Hewever, the fact that we are dealine with only subspecific levels of differentiation woutd tend to suggest that an interruption to gene तove occurred in the late Plestocene rather than al some eartier time It is reasonable in suggest, therefore, that fhe relevani slissection posi-dated the 30-50 0000 yedrs B.P. Mungo Tacusblime phase teferted to by Bowler (1982), but not the period of maximum atidny 18 trion yeate B. 11

The equestion still remains as to why populations of C_{1}, lucasi and C: glbbosa are not now found in the wer lat soatit west curner of W.A. (say to the south-west of a sthaighe line from Busceton to Albany). One cati only suppose that, athough these species had almost continuous and extensive castwese distributions prior to dissection by an arid corridor through the Nutlarbor region, they did uot estend to the extreme south-west of W. A., and have been unable to achieve dispersal there since.

It may be noted that the poputalion of C lucasi near Cue inhabited a body of watet that was probably at least partally of man-made origin: field notes stated shat the depression was "likety to have been artificiatly deepened". The man-made mature of the pond occupied by C: yibhosa al Newmann's, Rocks was amplrasised by Bayly (1979). Populaliont of C. lucast and Co sthinosa in the desent regions of W. A. must have been very sparse in resebt tinkes before the adveat of European man, and it is possible ibat man-made excavations have allowed significant expansion of populations this century.

An allernative ivectretation to that presented above is that the W.A. populations of C. Iucasi and C. sibbosa represent recent penetrations from ithe east, such movement perhaps being 「avouted by anthrapregerue modification of desert habitats, This, however, apparantly runs counter to the morphotogical exidence in the case of C. Iurasi.

Distribution of C, canberra Bxyly

The triangular distribation shown for C : conberra by Bayty \& Williams (1973, lig. fri4) was based only on live records; the top left apex was for Iwo dams clase fo , Alice Springs, the top right apex was for two lakes (Barcoorah and Dunn) rear Aramac. and the bottom apex was tor the lype locatily, Lake George, near Canberia. New records, summariked and combined with the older ones in Fig: 7, are as pollowe
SA: Kiles dam nr Farina ($30^{\circ} 04^{\prime} \mathrm{S} .198^{\circ} 17^{\prime} \mathrm{E}$), 27, xi, 1074, wate trole nr 15utkattionna (290015. 138281 .) Budaville Trach, Isii.1974: Couper Erech crossing in

 ruad id Siuart Creek Starion txii. 1974: susmp toculs Playmumdy 6 km SE of Billa Kalina H.S Cg-5s's. 13h I1' E., Sxii. 1974; Beresford Dam E of Willian Creek
 of Willian Creck, Txii.1974: dam If sm N . of Willian Geek, v, 1976; dam 35 km N . of Willham Greek, v.147 fis Albcsya Crees road crossume 46 bin N NW al Cloctuadata, $3 . v .197 \mathrm{ft}$ waterhole 5 km N of Mt Sarah (26.55'4.. $135^{2} 20$ KI 4.v1976; all il coll. W zeidlet. Beyestard tailway dam (29\%14>. [30-291-), 1978, coll. B. 1) DtichelL. Dam hr Carticton 132-265, B4 32E,
 $124555,139.354,165 \mathrm{~km}$'s of Beduaric $18, . \times 1977$; Lomgreach watcrhoic (32.46 S, 138 Sl E.) bethem

both coll. W. Zeidler. N.S.W.: Dam 2 km from Wanaaring ($29^{\circ} 42^{\prime} \mathrm{S}$., $144^{\circ} 09^{\prime}$ E.), i.1969, coll. W. D. Williams et al. Pond 16 km S.W. of Narrandera ($34^{\circ} 45^{\prime} \mathrm{S}$., $146^{\circ} 33^{\prime}$ E. $)$, 10 v. 1982 , coll. E. J. Maly. N.T.: Waterhole under McGrath Creek bridge 47 km N . of Alice Springs $\left(23^{\circ} 19^{\prime} \mathrm{S}\right.$., $133^{\circ} 47^{\prime}$ E.), $20 . \mathrm{iv} .1979$; roadside ditch 7 km N . of Stirling $\left(21^{\circ} 44^{\prime} \mathrm{S} ., 133^{\circ} 46^{\prime}\right.$ E.), 20.iv. 1979 ; both coll. D. Black.

These records show that C. canberra is widely distributed in the central arid portions of Australia to the east of the eastern border of W.A. Most of the water bodies from which it has been recorded are specifically described as being shallow and highly turbid.

Acknowledgments

I wish to thank W. Zeidler and other collectors mentioned above for providing me with the material on which this account is based.

Fig. 7. Distribution of Calamoecia canberra Bayly.

References

Bayly, 1. A. E. (1961) A revision of the inland water genus Calamoecia (Copepoda: Calanoida). Aust. J. Mar. Freshwater Res. 12, 54-91.
(1962) Additions to the inland water genus Calamoecia (Copepoda: Calanoida). Ibid 13, 252-264. (1964) A revision of the Australasian species of the freshwater genera Boeckella and Hemiboeckella (Copepoda: Calanoida). Ibid 15, 180-238.
(1978) Variation in sexual dimorphism in nonmarine calanoid copepods and its ecological significance. Limnol. Oceanogr. 23, 1224-1228.
(1979) Further contributions to a knowledge of the centropagid genera Boeckella, Hemiboeckella and Calamoecia (athalassic calanoid copepods). Aust. J. Mar. Freshwater Res. 30, 103-127.
\& WILLIAMS, W. D. (1964) Chemical and biological observations on some volcanic lakes in the south-east of South Australia. Ibid 15, 123-132. \& \qquad (1973) "Inland Waters and Their Ecology". (Longman: Melbourne.)
BELK, D. \& COLE, G. A. (1975) Adaptational biology of desert temporary-pond inhabitants. In N. F. Hadley (Ed.) "Environmental Physiology of Desert Organisms". (Dowden, Hutchinson and Ross: Stroudsbury.)
Bowier, J. M. (1982) Aridity in the late Tertiary and Quaternary of Australia. Paper 4 In W. R. Barker \& P. J. M. Greenslade (Eds) "Evolution of the Flora and Fauna of Arid Australia". (Peacock Publication: Adelaide.)

Chapman, A. (1973) Calamoecia lucasi (Copepoda, Calanoida) and other zooplankters in two Rotorua, New Zealand, lakes. Int. Rev. Ges. Hydrobiol. 58, 79-104.
Geddes, M. C., De Deckker, P., Williams, W. D., MORTON, D. W. \& TOPPING, M. (1981) On the chemistry and biota of some saline lakes in Western Australia. Hydrobiologia 82, 201-222.
Green, J. D. (1976) Population dynamics and production of the calanoid copepod Calamoecia lucasi in a northern New Zealand lake. Arch. Hydrobiol. Suppl. 50, 313-400.
McLaren, I. A. (1963) Effects of temperature on growth of zooplankton and the adaptive value of vertical migration. J. Fish. Res. Bd Can. 20, 685-727.
Maly, E. J. (1984) Dispersal ability and relative abundance of Boeckella and Calamoecia (Copepoda: Calanoida) in Australian and New Zealand waters. Oecologia (in press).
Mitchell, B. D. (1984) Limnology of mound springs and temporary pools south and west of Lake Eyre. In P. J. M. Greenslade (Ed.) "South Australia's Mound Springs". (Nature Conservation Society of South Australia: Adelaide.)
Timms, B. V. (1970) Chemical and zooplankton studies of lentic habitats in north-eastern New South Wales. Aust. J. Mar. Freshwater Res. 21, 11-33.

Biodiversity Heritage Library

1984. "A new species of Calamoecia (Copepoda: Calanoida) from South Australia, and comments on three congeners." Transactions of the Royal Society of South Australia, Incorporated 108, 147-154.

View This Item Online: https://www.biodiversitylibrary.org/item/128035
Permalink: https://www.biodiversitylibrary.org/partpdf/82195

Holding Institution

South Australian Museum

Sponsored by

Atlas of Living Australia

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: * Zoology Depatment, Monash University, Claymm, Vic. 316 x

[^1]: ${ }^{4}$ Length data from 10 individuals measured along a mid-dorsal line and omitting the well developed, posteriorly projecting "wings" on the last segment of the prosome,
 ${ }^{6}$ No ovigerous females presem.

 - From Green (1976, table 5). The data eepresent annual tocans obtsined from the measurement of a large number of individuals lrom each of a substantial series of samples.
 ${ }^{4}$ From Bayly (1961, table 2)
 E From Chapman (i973, table 3). Mean dara from a large number of individuals collected over a iwo-iv three-yeat period.

