New genera of Copepoda (Poecilostomatoida) from the scleractinian coral Psammocora in New Caledonia

ARTHUR G.HUMES
B oston U niversity M arine P rogram, M arine Biological Laboratory, W oods H ole, M assachusets, 02543, U.S.A.

Received J une 1995, accepted for publication November 1995

Three new monotypic genera of copepods (Poecilostomatoida) are associated with the hermatypic shallow-water coral Psammocora (Stephanaria) togianensis near Noumea, New Caledonia: in the Anchimolgidae, L ipochaetes extrusus (antenna 4-segmented, endopods absent in legs 3 and 4) and Dumbeana undulatipes (antenna 3 -segmented, endopod of leg 3 with formula $0-1 ; 0-2 ; 1, I I, 2$; leg 4 endopod with $0-1: I$); and in the R hynchomolgidae; E munoa protenta (leg 4 endopod with $0-1 ; I I$, antenna 4 -segmented, mandible with outer pointed process and inner row of spines). Copepoda (primarily Poecilostomatoida and Siphonostomatoida, but also relatively few Cyclopoida and H arpacticoida) are very frequent associates or parasites of Scleractinia. At present 245 species from 48 scleractinian coral genera are known. Species of these copepod associates, their host genera, and localities, described since (and those not included in) previous publications of the author are listed.
©1996 The Linnean Society of London
ADDITIONAL KEY WORDS: - Copepoda - Poecilostomatoida - associates - scleractinian corals New Caledonia.

CONTENTS

Introduction 59
M aterial and methods 60
Lipochaetes extrusus gen. nov., sp. nov. 61
Dumbeana undulatipes gen. nov., sp. nov. 68
Emunoa protenta gen. nov., sp. nov. 73
Copepod associates of scleractinian corals, their host genera, and localities, described since(and those not included in) the publications of H umes (1979a, 1985c) and Humes \& Dojiri,198278
Acknowledgements 80
R eferences 81

NTRODUCTION
Scleractinian corals, abundant in shallow tropical waters of the oceans of the world, offer copepods a readily available microhabitat. It is thus not surprising to find that copepods are very frequent associates or parasites of these cnidarians. Humes (1985a) reported 172 species from 47 host genera. Since then, the number of host genera has remained essentially the same, except for the addition of Flabellum by
stock (1985). The number of species of associated copepods, however, has more than doubled.

The great diversity of Copepoda living with hermatypic Scleractinia has become known only during the past 35 years. Although Sewell (1940: 215) described a new harpacticoid, Eudactylopus fasciatus, "from among weed growing on the stems of colonies of Stag's H orn M adrepore coral", it seems unlikely that this copepod was actually associated with this coral (probably a species of A cropora) from the M aldive Archipelago. Recognition of copepod parasites of corals began in 1960 with the description of two new species of X arifia and mention of both an undescribed species of X arifia from Pocillopora in the M aldive Islands, and a second undescribed species of X arifia from Stylophora in the Red Sea (H umes, 1960).

At present, 245 species of copepods are known to be associated with approximately 138 species of scleractinian corals belonging to 48 genera. M ost of these copepods belong to the Poecilostomatoida (85%), followed by the Siphonostomatoida (11\%), H arpacticoida (3\%), and Cyclopoida (1\%)). In addition, several poecilostomatoids, living with various coral genera, are known to genus only. W ith the exception of one deep-water solitary coral (Stock, 1985), all hosts are shallowwater hermatypic corals.

The coral hosts from which copepods have been described are spread over 14 families: Pocilloporidae (3 genera), Poritidae (3), Acroporidae (3), Siderastreidae (1), Agariciidae (3), Fungiidae (5), O culinidae (2), Pectiniidae (2), M ussidae (3), M erulinidae (3), Faviidae (13), Caryophylliidae (4), Dendrophylliidae (3), and Trochosmiliidae (3). (For the classification of the corals I have relied upon the work of Vaughan \& Wells (1943). Further information has been obtained from V eron (1986)).

The diversity in body form among copepods living with corals reflects the degree of the association. Those regarded as endoparasitic in the coral polyps often have highly modified, wormlike, sometimes swollen bodies, with reduction or loss of appendages, as in X arifia, C oralloveria, and Kombia. O thers, apparently more loosely associated with their hosts, for example, Anchimolgus and Hetairosyna, show less modification and are readily recognizable as copepods.

V ery few observations have been made on the exact locations in the corals or the relationships of the copepods to the hosts. Gerlach in Humes (1960) observed that species of the endoparasitic genus X arifia crawl in and out of the polyps, tearing the polyp tissue with their claws. In certain cases, it appears obvious that the copepods reside within the coral polyps. Such is believed to be the situation, for example, in Cerioxynus alatus H umes, 1974, where, after three successive vigorous washings of the coral F avia favus Forskål, the copepods were found in numbers of 20,15 , and 5 , respectively.

MATERIAL AND METHODS

Immediately after collection in the field, the corals were isolated in plastic bags, returned to the laboratory, and placed in pails with the original sea water to which a small amount of 95% ethanol was added to make approximately a 5% solution. The corals remained in this slightly alcoholized water for a few hours, and then were thoroughly shaken and rinsed. The water was then passed through a fine net (125
holes per 2.5 cm , each hole approximately $120 \mu \mathrm{~m}$ square) and the copepods recovered from the sediment retained in the net.

The copepods were measured and dissected in lactic acid according to the method of H umes \& G ooding (1964). All figures were drawn with the aid of a camera lucida. The letter after the explanation of each figure refers to the scale at which it was drawn. T he body length does not include the setae on the caudal rami. T he lengths of the segments of the antennules were measured along their posterior nonsetiferous margins. In the formulas for legs 1-4 the Roman numerals indicate spines, the A rabic numerals represent setae.

Poecilostomatoida Thorell, 1859
Anchimolgidae Humes \& Boxshall, 1996b
Lipochaetes gen. nov.
Diagnosis. Anchimolgidae. Body cyclopiform, elongate, modified. Antennule 6 -segmented. Formula 4, 9, 4, 2, $2+1$ aesthetasc, and $7+2$ aesthetascs in female; similar in male but 2 aesthetascs added on second segment and 1 on fourth segment. Antenna 4 -segmented with 1 terminal claw. M andible with outer toothlike process directed distally.

Legs 1 and 2 with 3 -segmented rami, legs 3 and 4 with 3 -segmented exopods but lacking endopods. Second segment of exopod of leg 2 without outer spine. Endopods of legs 1 and 2 with first 2 segments unarmed. Exopods of legs 3 and 4 with $0-0 ; 0-0$; II. Sexual dimorphism in endopods of legs 1 and 2 in male. Setae on all legs much reduced or absent. In tercoxal plates of legs 1-4 weak. Leg 5 with free segment bearing 2 setae. Leg 6 represented by 2 setae on ventrally located genital area. Egg sac multiseriate.

Associated with Scleractinia.
G ender. M asculine.
T ype species. Lipochates extrusus sp. nov.
E tymology. The name of the genus is a combination of the G reek words leipo, to lack, and chaíte, a long hair, alluding to the absence of long feathered setae on legs 1-4.
Remarks. Lipochaetes might at first be mistaken for Allopodion H umes, 1978, in which, as in the new species, legs 1 and 2 have 3-segmented exopods and endopods and legs 3 and 4 have 3 -segmented exopods but lack endopods. There are, however, significant differences. In the new species, the genital openings in the female are located ventrally (versus dorsally), the antennule is 6 -segmented (versus 7 -segmented), the mandible has a distally directed toothlike process (versus proximally directed process), segments 1 and 2 of the endopods of legs 1 and 2 are unarmed (versus $0-1 ; 0-1$), segment 2 of the exopod of leg 2 is unarmed (versus I-1), and the exopods of legs 3 and 4 have $0-0 ; 0-0 ; 1 I$ (versus I-0; I-0; I,5, or I, 4).

Lipochactes extrusus sp. nov.

(Figs 1a-g, 2a-k, 3a-g, 4a-i)
T ype material. 11 Q \bigcirc, $11 \mathrm{O}^{7} \mathrm{O}^{7}$ from P sammocora (Stephanaria) togianensis U mbgrove, reef between Ile N'dié and M t. K umuru, Baie Dumbea, near Noumea, New Caledonia,
$22^{\circ} 13^{\prime} 40 " S, 166^{\circ} 24^{\prime} 18^{\prime \prime}$ E, 9 July 1971. Holotype ㅇ (USNM 274116), allotype 0^{7} (USNM 274117), and 15 paratypes (7 \& $\mathcal{Y}, 8$ O' $O^{\prime \prime}$) (USNM 274118) deposited in the National M useum of Natural History, Smithsonian Institution, W ashington, D.C. Remaining paratypes (dissected) in the collection of the author.
Female Body (Fig. 1a,b) elongate, slender. Length 1.27 mm ($1.22-1.30 \mathrm{~mm}$) and greatest width $0.36 \mathrm{~mm}(0.35-0.37 \mathrm{~mm})$, based on 5 specimens. Greatest dorsoventral thickness 0.33 mm . Somite bearing leg 1 incompletely separated from cephalosome by weak transverse dorsal suture. Epimera of metasomal somites rounded in dorsal view, incomplete in lateral view. Ratio of length to width of prosome 2.03:1. R atio of length of prosome to that of urosome 1.56:1.

Somite bearing leg 5 (Fig. 1c) $78 \times 255 \mu \mathrm{~m}$. Genital double-somite in dorsal view $133 \times 205 \mu \mathrm{~m}$, much wider than long, ratio $0.66: 1$, sides rounded. Genital areas located ventrally, each area bearing 2 minute setae. Three postgenital somites from anterior to posterior $62 \times 116,53 \times 88$, and $83 \times 92 \mu \mathrm{~m}$.

Caudal ramus (Fig. 1d) unornamented, elongate, $114 \mu \mathrm{~m}$ long, $27 \mu \mathrm{~m}$ wide proximally, $15.5 \mu \mathrm{~m}$ wide distally, and $23 \mu \mathrm{~m}$ wide at midregion; ratio $4.96: 1$ (width taken at midregion). O utermost lateral seta, inserted near midregion of ramus, $26 \mu \mathrm{~m}$; dorsal seta minute, $3 \mu \mathrm{~m}$, obscure. O utermost terminal seta $17 \mu \mathrm{~m}$, innermost terminal seta $17 \mu \mathrm{~m}$, and 2 very unequal median terminal setae $19 \mu \mathrm{~m}$ (outer) and $168 \mu \mathrm{~m}$ (inner).

Surface of body without visible sensilla.
Egg sac (Fig. 1e) oval, $385 \times 218 \mu \mathrm{~m}$, with usually 6 eggs, each egg approximately $117-125 \mu \mathrm{~m}$ in diameter. Egg sacs in 1 female with 5 eggs (Fig. 1f).

R ostrum (Fig. 1g) weak, sublinguiform. Antennule (Fig. 2a) short, $170 \mu \mathrm{~m}$ long, 6 -segmented (although third segment showing 2 sclerotized bars suggesting subdivision as 2 segments). Lengths of segments: 26 ($39 \mu \mathrm{~m}$ along anterior side), 57, $16,16,16$, and $14 \mu \mathrm{~m}$. Formula for armature: $4,9,4,2,2+1$ aesthetasc, and $7+2$ aesthetascs. All setae smooth. Antenna (Fig. 2b) $250 \mu \mathrm{~m}$ long including claw, much longer than antennule, 4 -segmented. Armature: 1, 1, 3, and 1 terminal claw. Fourth segment elongate, $68 \mu \mathrm{~m}$ along inner side, $49 \mu \mathrm{~m}$ along outer side, and $18 \mu \mathrm{~m}$ wide. C law $42 \mu \mathrm{~m}$.

Labrum (Fig. 2c) with 2 posteroventral lobes. Paragnath not seen. M andible (Fig. 2d) with distally directed dentiform process on convex side of base. R ow of setules at almost right angle to base of long lash beyond indentation on concave side of base. M axillule (Fig. 2e) with 3 setae. M axilla (Fig. 2f) 2 -segmented, first segment unarmed, second segment with 2 setae and long lash bearing unilateral graduated spines. M axilliped (Fig. 2g) 3 -segmented, first segment unarmed, second segment with 2 setae, and small third segment having spiniform tip and bearing spiniform seta.
V entral area between maxillipeds and first pair of legs (Fig. 2h) not protuberant, lacking median sclerite anterior to intercoxal plate of leg 1.

Legs 1 and 2 (Figs 2i-k, 3a) biramous with 3 -segmented rami. Legs 3 and 4 (Figs $2 k, 3 a$) with 3 -segmented exopods but endopods absent. Formula for armature:

P_{1}	coxa $0-0$	basis $1-0$	$\exp \mathrm{I}-0 ;$	$I-0 ;$	$I I I, ~ I, ~$
			enp $0-0 ;$	$0-0 ;$	I, I
P_{2}	coxa $0-0$	basis $1-0$	$\operatorname{exp~I-0;}$	$0-0 ;$	$I, I I, 2$
			enp $0-0 ;$	$0-0 ;$	$I, I I$

P_{3}	coxa 0-0	basis 1-0	$\exp 0-0 ;$ enp -	$0-0 ;$	II
P_{4}	coxa 0-0	basis 1-0	$\exp 0-0 ;$ enp -	$0-0 ;$	II

Intercoxal plates short, strongest in leg 1, weakest in leg 4. Inner seta on coxa absent in all 4 legs. Spines on leg 1 laterally barbed, those on legs 2-4 with narrow lamellae. Leg 4 with terminal spines unequal, 21 and $53 \mu \mathrm{~m}$, ratio 1:2.52.
Leg 5 (Fig. 3b) with elongate unornamented free segment $110 \times 34 \mu \mathrm{~m}$, ratio 3.26:1. Two terminal setae 36 and $70 \mu \mathrm{~m}$. Adjacent dorsal seta $39 \mu \mathrm{~m}$. All setae smooth.
Leg 6 represented by 2 minute setae on genital area (Fig. 1c).
Colour of living specimens in transmitted light opaque grey, eye red.
M ale Body (Fig. 3c,d) elongate, slender. Length 1.29 mm (1.28-1.32 mm) and greatest width $0.29 \mathrm{~mm}(0.28-0.30 \mathrm{~mm})$, based on 5 specimens. G reatest dorsoventral thickness 0.32 mm . Epimera of metasomal somites less rounded than in female. Ratio of length to width of prosome 2.4:1. Ratio of length of prosome to that of urosome 1.04:1.
Somite bearing leg 5 (Fig. 3e) $52 \times 172 \mu \mathrm{~m}$. Genital somite in dorsal view $200 \times 200 \mu \mathrm{~m}$, with gently rounded lateral margins. Four postgenital somites from anterior to posterior $83 \times 90,65 \times 86,60 \times 78$, and $64 \times 68 \mu \mathrm{~m}$.

C audal ramus (Fig. 3e) $110 \times 21 \mu \mathrm{~m}$, resembling that of female, ratio 5.24:1.
Body surface smooth.
R ostrum as in female. Antennule like that of female but 3 long aesthetascs added, 2 on second segment and 1 on fourth segment, their locations indicated by dots in Figure 2a. Distal aesthetasc on second segment $160 \mu \mathrm{~m}$ long, approximately as long as entire antennule ($162 \mu \mathrm{~m}$). Antenna (Fig. 3f) resembling that of female, but slight sexual dimorphism evident in longer setae on first and second segments.

Labrum, mandible, maxillule, and maxilla as in female. M axilliped (Fig. 3g) 4 -segmented, assuming proximal part of claw to represent fourth segment. First segment unarmed, second segment with 2 inner setae (1 with bulbous base), third segment unarmed, claw $85 \mu \mathrm{~m}$ with 2 very unequal setae proximally.
\checkmark entral area between maxillipeds and first pair of legs as in female.
Legs 1-4 (Fig. 4a,c,e,f) segmented as in female. Sexual dimorphism in endopods of legs 1 and 2. Endopod of leg 1 (Fig. 4b) with third segment having strong, recurved outer spine, distal spiniform process on this segment larger than in female. Endopod of leg 2 (Fig. 4d) with spines slightly longer than those in female. Leg 4 with 2 spines 18 and $55 \mu \mathrm{~m}$, ratio 1:3.06.
Leg 5 (Fig. 4 g) with small rectangular free segment $26 \times 9 \mu \mathrm{~m}$, ratio 2.34:1. Two terminal setae 50 and $34 \mu \mathrm{~m}$. Adjacent dorsal seta $44 \mu \mathrm{~m}$.

Leg 6 (Fig. 4h) posteroventral flap on genital somite bearing 2 setae.
Spermatophore (Fig. 4i), attached to female in pairs, elongate, $257 \times 100 \mu \mathrm{~m}$, not including neck.
Colour of living specimens as in female.
E tymology. The name of the species, extrusus, Latin meaning thrust out, alludes to the extended antennae and legs 1-4.

Figure 1. Lipochaetes extrusus gen. nov., sp. nov. Female. a, dorsal (scale A); b, lateral (A); c, urosome, ventral (B); d, anal somite and caudal ramus, ventral (C); e, egg sac, dorsal (E); f, egg sac, dorsal $(E) ;$ g, rostrum, ventral $(D) . A_{1}=$ antennule, $A_{2}=$ antenna, $L=$ labrum.

Figure 2. Lipochaetes extrusus gen. nov., sp. nov. Female. a, antennule, with dots indicating positions of aesthetascs in male, postero-inner (scale C); b, antenna, inner (C); c, labrum, ventral (F); d, mandible, posterior (F); e, maxillule, anterior (G); f maxilla, posterior (F); g, maxilliped, inner (E); h, area between maxillipeds and first pair of legs, ventral (D); i, leg 1 and intercoxal plate, posterior (H); j, leg 2 and intercoxal plate, posterior (H); k, leg 3 and intercoxal plate, posterior (H). M XPD = maxilliped; $\mathrm{pl}=\operatorname{leg} 1$.

Figure 3. Lipochaetes extrusus gen. nov., sp. nov. Female. a, leg 4 and intercoxal plate, anterior (scale H); b, leg 5, dorsal (C). M ale. c, dorsal (A); d, lateral (A); e, urosome, dorsal (I); f, antenna, inner (C); g, maxilliped, inner (C).

D umbeana gen. nov.

Diagnosis. Anchimolgidae. Close to U nicispina Humes, 1993, but leg 3 with third segment of endopod armed with I,II,2.
T ype Species. Dumbeena undulatipes sp. nov.

G ender. Feminine.

Etymology. The generic name is a noun formed by the combination of Dumbea, the name of the bay near Noumea where the copepods were found, and the L atin suffix -ana, meaning pertaining to.
Remarks. Six genera belonging to the lichomolgoid complex (H umes \& Boxshall, 1996b) have the formula $0-1 ;$ I for the endopod of leg 4 . Of these, four may be distinguished from Dumbeana by their 4-segmented antenna: Euxynus H umes, 1992a, Juxtandrianellus Humes, 1995a, M oluccomolgus Humes 1992a, and Parandrianellus Humes 1991a. The two remaining genera, J amescookina Humes, 1991a, and U nicispina Humes, 1993, both with 3 -segmented antennae, may be distinguished on

Figure 4. Lipochaetes extrusus gen. nov., sp. nov. M ale. a, leg 1 and intercoxal plate, anterior (scale H); b, endopod of leg 1, anterior (F); c, leg 2 and intercoxal plate, posterior (H); d, endopod of leg 2, posterior (F); e, leg 3 and intercoxal plate, anterior (H); f, leg 4 and intercoxal plate, anterior (H); g, leg 5, dorsal (F); h, genital somite showing leg 6 and first postgenital somite, ventral (D); i, spermatophores, attached to female, ventral (E).
other grounds. In Jamescookina the caudal ramus has very short setae and the mandible has a pointed hyaline process on its convex side. U nicispina resembles Dumbeana in several features, for example, the mandible and leg 4, but differs conspicuously from the new genus in having the formula $0-1 ; 0-2 ; 1,2$ for the endopod of leg 3.

Dumbeana undulatipes sp. nov.

(Figs 5a-d, 6a-h, 7a-i)
T ype material. 10 ¢ Y, 9 O $^{7} \mathrm{O}^{7}$ from P sammocora (Stephanaria) togianensis U mbgrove, in 3 m , between Ile N'Dié and Mt. Kumuru, near Noumea, New Caledonia, $22^{\circ} 13^{\prime} 40$ "S, $166^{\circ} 24^{\prime} 18^{\prime \prime}$ E, 9 July 1971. H olotype of (USNM 274119), allotype $O^{\prime \prime}$ (USNM 274120) and 13 paratypes ($69 \%, 7 O^{\prime \prime} O^{\prime \prime}$) (USNM 274121) deposited in the National M useum of Natural History, Smithsonian Institution, Washington, D.C. Remaining paratypes (dissected) in the collection of the author.
Female Body (Fig. 5a) with moderately broad prosome. Length 1.06 mm ($0.99-1.12 \mathrm{~mm}$) and greatest width $0.44 \mathrm{~mm}(0.41-0.51 \mathrm{~mm})$, based on 10 specimens. Greatest dorsoventral thickness 0.35 mm . Somite bearing leg 1 slightly separated laterally from cephalosome by incomplete transverse suture. Epimera of metasomal somites rounded. Ratio of length to width of prosome 1.43:1. Ratio of length of prosome to that of urosome 1.71:1.

Somite bearing leg 5 (Fig. 5b) $73 \times 148 \mu \mathrm{~m}$. Genital double-somite in dorsal view slightly wider than long, $164 \mu \mathrm{~m}$ long, $179 \mu \mathrm{~m}$ wide at anterior 'shoulders' and $135 \mu \mathrm{~m}$ wide at more posterior expansions. Ratio of length to width (taken at anterior shoulders) 0.92:1. R atio of length to width at posterior expansion 1.22:1. Genital areas located dorsolaterally between 2 expansions, both areas bearing 2 small setae. Three postgenital somites from anterior to posterior $39 \times 81,34 \times 81$, and $57 \times 86 \mu \mathrm{~m}$.

C audal ramus (Fig. 5c) unornamented, $70 \times 38 \mu \mathrm{~m}$, ratio 1.84:1. O uter lateral seta $86 \mu \mathrm{~m}$, dorsal seta $31 \mu \mathrm{~m}$, outermost terminal seta $104 \mu \mathrm{~m}$, innermost terminal seta $156 \mu \mathrm{~m}$, and 2 median terminal setae $286 \mu \mathrm{~m}$ (outer) and $385 \mu \mathrm{~m}$ (inner). All setae with lateral setules except smooth dorsal seta.

Body surface without visible sensilla.
Egg sac not seen.
R ostrum (Fig. 5d) with incomplete posteroventral margin. Antennule (Fig. 6a) $352 \mu \mathrm{~m}$ long. Lengths of its 7 segments: 31 ($55 \mu \mathrm{~m}$ along anterior margin), 117, 26, $61,49,31$, and $23 \mu \mathrm{~m}$. Armature: 4, 13, 6, 3, $4+1$ aesthetasc, $2+1$ aesthetasc, and $7+1$ aesthetasc. All setae smooth. One seta on first segment unusually long. Antenna (Fig. 6b) 3-segmented, $270 \mu \mathrm{~m}$ long, including claw. Formula: 1, 1, 3, and 1 terminal claw. First segment $86 \mu \mathrm{~m}$ long, second segment $73 \mu \mathrm{~m}$ long, third segment $107 \times 17 \mu \mathrm{~m}$ (width at midregion). C law $40 \mu \mathrm{~m}$.

Labrum (Fig. 5d) with 2 posteroventral lobes. M andible (Fig. 6c) having broad expansion bearing row of setules beyond indentation on convex side, and 2 unequal lobes on concave side separated by incision, with slender setules on smaller lobe and stouter setules on larger lobe. Lash long with delicate lateral setules. Paragnath not seen. M axillule very small, approximately $20 \mu \mathrm{~m}$ long, with apparently 3 setae. M axilla (Fig. 6d) with second segment bearing 2 setae and extended as strong lash

Figure 5. Dumbeana undulatipes gen. nov., sp. nov. Female. a, dorsal (scale J); b, urosome, dorsal (H); c, anal somite and caudal ramus, dorsal (C); d, rostrum and labrum, ventral (D). $A_{1}=$ antennule, $\mathrm{A}_{2}=$ antenna .

Figure 6. Dumbeana undulatipes gen. nov., sp. nov.. Female. a, antennule, with dots indicating positions of aesthetascs in male, anterodorsal (scale C); b, antenna, posterior (C); c, mandible, anterior (G); d, maxilla, anterior (F); e, maxilliped, antero-inner (F); f, area between maxillipeds and first pair of legs, ventral (D); g, leg 1 and intercoxal plate, anterior (H); leg 2 and intercoxal plate, anterior (H). $\mathrm{MXPD}=$ maxilliped, $\mathrm{P}_{1}=$ leg 1 .

Figure 7. Dumbeana undulatipes gen. nov., sp. nov. Female, a, leg 3 and intercoxal plate, anterior (scale H); b, leg 4 and intercoxal plate, anterior (H); c, endopod of leg 4, anterior (F); d, leg 5, dorsal (C). M ale. e, dorsal (J); f, urosome, dorsal (H); g, maxilliped, inner (E); h, leg 5, dorsal (F); i, genital somite showing leg 6 and first postgenital somite, ventral (H).
armed unilaterally with graduated spines. M axilliped (Fig. 6e) with second segment bearing 2 setae, small third segment with seta and short terminal spine.

Ventral area between maxillipeds and first pair of legs (Fig. 6f) only slightly protuberant.

Legs 1-4 (Figs 6g,h, 7a,b) with 3-segmented rami except 2-segmented endopod in leg 4. Formula for armature:

P_{1}	coxa 0-1	basis 1-0	exp I-0;	1-1;	III, I, 4
			enp 0-1;	0-1;	
P_{2}	coxa 0-1	basis 1-0	exp I-0;	1-1;	III, 1, 5
P_{3}	coxa 0-1	basis 1-0	enp 0-1;	0-2;	I,II, III, 1,5
			enp 0-1;	0-2;	I, II, 2
P_{4}	coxa 0-1	basis 1-0	exp I-0;	1-1;	II, I, 5

Leg 4 with exopod $166 \mu \mathrm{~m}$ long. Endopod (Fig. 7c) with first segment $21 \times 19 \mu \mathrm{~m}$, its inner seta $44 \mu \mathrm{~m}$; second segment $39 \times 17 \mu \mathrm{~m}$, its terminal delicately barbed spine $45 \mu \mathrm{~m}$. O uter margin of both endopodal segments with setules.

Leg 5 (Fig. 7d) with long, slender, unornamented slightly undulating free segment $104 \mu \mathrm{~m}$ long, $21 \mu \mathrm{~m}$ in greatest width, and $11 \mu \mathrm{~m}$ wide terminally. R atio 4.95:1, taking greatest width. T wo terminal setae $50 \mu \mathrm{~m}$ and $48 \mu \mathrm{~m}$. Adjacent dorsal seta on somite $44 \mu \mathrm{~m}$. All setae smooth.

Leg 6 represented by 2 small setae on genital area (Fig. 5b).
C olour of living specimens in transmitted light opaque grey, eye red.
M ale Body (Fig. 7e) with prosome slightly more slender than in female. Length $0.82 \mathrm{~mm}(0.79-0.87 \mathrm{~mm})$ and width $0.29 \mathrm{~mm}(0.28-0.35 \mathrm{~mm})$, based on 9 specimens. G reatest dorsoventral thickness $0.22 \mu \mathrm{~m}$. R atio of length to width of prosome 1.61:1. R atio of length of prosome to that of urosome 1.45:1.

Somite bearing leg 5 (Fig. 7f) $31 \times 99 \mu \mathrm{~m}$. Genital somite $180 \mu \mathrm{~m}$ long including leg 6 ($169 \mu \mathrm{~m}$ long without leg 6), width $172 \mu \mathrm{~m}$. Ratio $1.05: 1$. Four postgenital somites $21 \times 52,21 \times 54,17 \times 57$, and $40 \times 66 \mu \mathrm{~m}$.

Caudal ramus $49 \times 31 \mu \mathrm{~m}$, ratio 1.58:1, resembling that of female.
Body surface smooth as in female.
R ostrum like that of female. Antennule segmented and armed as in female, but 3 aesthetascs added (at points shown by dots in Fig. 6a). Antenna like that of female.

Labrum, mandible, maxillule, and maxilla similar to those of female. M axilliped (Fig. 7g) with second segment having 2 setae and row of slender spindules. Claw $109 \mu \mathrm{~m}$ long and bearing 2 very unequal setae proximally.
V entral area between maxillipeds and first pair of legs as in female.
Legs 1-4 like those of female.
Leg 5 (Fig. 7h) small, unornamented, rectangular, $23 \times 9 \mu \mathrm{~m}$, ratio 2.56:1.
Leg 6 (Fig. 7i) with 2 setae.
Colour as in female.
E tymology. The specific name undulatipes is a combination of the Latin words undulatus, wavy, and pes, foot, forming a noun in apposition and alluding to the form of the free segment of leg 5 .

R hynchomolgidae H umes \& Stock, 1972
E munoa gen. nov.
Diagnosis. R hynchomolgidae. M andible beyond proximal notch (deep indentation) with large pointed unornamented process on convex side and row of spines perpendicular to lash on concave side. Lash long. M axillule with 3 setae. 0 therwise similar to Anchimolgus and as in description below.
G ender. Feminine.
T ype species. E munoa protenta sp. nov.
E tymology. The generic name is an anagram of Noumea, the city in New Caledonia near which the copepods were found.

Remarks. In the key to the genera of the R hynchomolgidae provided by Humes \& Boxshall (1996b) E munoa approaches Paramolgus Humes \& Stock, 1973. However, there are several distinguishing features between these two genera. In Paramolgus the mandible bears an outer scale incorporated into the margin of the mandible and bearing spinules; and, in most species, setules are found near the insertion of the terminal claw of the antenna and sexual dimorphism occurs in the endopod of leg 1 of the male, with the third segment having II,4 (instead of I,5 as in the female).

The form of the mandible in Emunoa is distinctive, having an outer hyaline, pointed, unornamented process beyond the proximal notch (on the convex side) and an inner row of spines (on the convex side).

Emunoa protenta sp. nov.

(Figs 8a-i, 9a-j, 10a-j)
T ype material. 80 O Q , $123 \mathcal{O}^{7} \mathrm{O}^{7}$ from Psammocora (Stephanaria) togianensis U mbgrove, in 3 m , reef between N'dié and Mt. Kumuru, near Noumea, New Caledonia, $22^{\circ} 13^{\prime} 40 " \mathrm{~S}, 166^{\circ} 24^{\prime} 18^{\prime \prime} \mathrm{E}, 9$ July 1971. Holotype of (USNM 274130), allotype O' $^{\prime \prime}$ (USN M 274131), and 175 paratypes (66 q q, 109 O' 7) (USNM 274132) deposited in the National M useum of Natural H istory, Smithsonian Institution, W ashington, D.C. Remaining paratypes (dissected) in the collection of the author.

Female Body (Fig. 8a,b) elongate. Length $1.27 \mathrm{~mm}(1.17-1.38 \mathrm{~mm}$) and greatest width $0.44 \mathrm{~mm}(0.40-0.46 \mathrm{~mm})$, based on 10 specimens. Greatest dorsoventral thickness 0.33 mm . Somite bearing leg 1 separated from cephalosome by weak dorsal transverse suture. Epimera of metasomal somites rounded. R atio of length to width of prosome 1.64:1. R atio of length of prosome to that of urosome 1.13:1.

Somite bearing leg 5 (Fig. 8c) $73 \times 180 \mu \mathrm{~m}$. Genital double-somite in dorsal view $156 \times 127 \mu \mathrm{~m}$, ratio 1.23:1, with gently rounded lateral margins; in lateral view (Fig. 8d) indented dorsally. Genital areas located dorsolaterally, both bearing 2 minute setae; open inverted V -shaped sclerotization between these areas. T hree postgenital somites from anterior to posterior $101 \times 70,83 \times 62$, and $86 \times 52 \mu \mathrm{~m}$.

Caudal ramus (Fig. 8e) elongate, unornamented, $125 \times 18 \mu \mathrm{~m}$, ratio 6.94:1. O uter lateral seta $52 \mu \mathrm{~m}$, dorsal seta $19 \mu \mathrm{~m}$, outermost terminal seta $57 \mu \mathrm{~m}$, innermost terminal seta $60 \mu \mathrm{~m}$, all smooth, and 2 median terminal setae 166 (outer) and $213 \mu \mathrm{~m}$ (inner), both with delicate lateral setules.

Body surface without visible sensilla.

Figure 8. Enumoa protenta gen. nov., sp. nov. Female. a, dorsal (scale A); b, lateral (A); c, urosome, dorsal (D); d, genital double-somite and first postgenital somite, lateral (F); e, anal somite and caudal ramus, dorsal (C); f, egg sac, ventral (D); g, egg sac, ventral (D); h, rostrum, ventral (D); i, antennule, with dots indicating positions of aesthetascs in male, anterodorsal (C). $A_{1}=$ antennule, $A_{2}=$ antenna, $\mathrm{L}=$ labrum.

Figure 9. Enumoa protenta gen. nov., sp. nov. Female. a, antenna, outer (scale C); b, labrum, ventral (C); c, mandible, anterior (F); d, maxillule, anterior (F); e, maxilla, posterior (F); f, maxilliped, posterior (F); g, area between maxillipeds and first pair of legs, ventral (D); h, leg 1 and intercoxal plate, posterior (H); i, leg 2 and intercoxal plate, anterior (H); j, leg 3 and intercoxal plate, anterior (H), M X PD $=$ maxilliped, $\mathrm{P}_{1}=$ leg 1 .

Figure 10. Enumoa protenta gen. nov., sp. nov. Female. a, leg 4 and intercoxal plate, anterior (scale H); b, endopod of leg 4, anterior (F); c, leg 5, dorsal (F). M ale. d, dorsal (A); e, urosome, dorsal (D); f, antenna, dorsal (C); g, maxilliped, outer (C); h, endopod of leg 1, posterior (C); i, leg 5, dorsal (F); j, genital somite showing leg 6 and first postgenital somite, ventral (D).

Egg sac oval, containing 4 eggs (Fig. 8f), $221 \times 187 \mu \mathrm{~m}, 5$ eggs, or 6 eggs (Fig. 8g), $264 \times 187 \mu \mathrm{~m}$, eggs $104-150 \mu \mathrm{~m}$ in diameter.

R ostrum (Fig. 8h) broadly linguiform, with weak posteroventral edge. Antennule (Fig. 8i) $295 \mu \mathrm{~m}$ long, 7 -segmented. Lengths of its segments: 21 ($39 \mu \mathrm{~m}$ along anterior side), $90,24,52,45,25$, and $18 \mu \mathrm{~m}$. Formula for armature: $4,13,6,3,4+1$ aesthetasc, $2+1$ aesthetasc, and $7+1$ aesthetasc. All setae smooth. Antenna (Fig. 9a) $213 \mu \mathrm{~m}$ including claw, 4 -segmented. Formula: $1,1,3$, and 1 terminal claw. Fourth segment $31 \mu \mathrm{~m}$ along inner side, $17 \mu \mathrm{~m}$ along outer side, and $21 \mu \mathrm{~m}$ wide.

Labrum (Fig. 9b) with 2 broad posteroventral lobes. M andible (Fig. 9c) with deep indentation. Large pointed process beyond indentation on convex side; row of spines perpendicular to base of lash on concave side, those spines at ends of row large. Lash long, with 2 small spiniform processes at base and with delicate lateral setules. Paragnath not seen. M axillule (Fig. 9d) with 3 setae. M axilla (Fig. 9e) and maxilliped (Fig. 9f) segmented and armed as in species of Anchimolgus. Second segment of maxilliped concave on outer side.

V entral area between maxillipeds and first pair of legs as in Fig. 9g.
Legs 1-4 (Figs 9h-j, 10a) with 3-segmented rami, except for 2 -segmented endopod in leg 4. Formula for armature:

P_{1}	coxa 0-1	basis 1-0	exp 1-0;	-1;	III, I, 4
			enp 0-1;	0-1;	
P_{2}	coxa 0-1	basis 1-0	$\exp \mathrm{I}-0$;	1-1;	III, I, 5
			enp 0-1;	0-2;	IIII, III, 1,5
P_{3}	coxa 0-1	basis 1-0	$\begin{aligned} & \exp \mathrm{I}-0 ; \\ & \text { enp } 0-1 ; \end{aligned}$	$\begin{aligned} & 1-1 ; \\ & 0-2 ; \end{aligned}$	$\begin{aligned} & 111,1,5 \\ & 1,11,2 \end{aligned}$
P_{4}	coxa 0-1	basis 1-0	$\exp 1-0$;	1-1;	II, 1, 5

Leg 4 with exopod $153 \mu \mathrm{~m}$ long. Endopod (Fig. 10b) with first segment $31 \times 18 \mu \mathrm{~m}$, its inner plumose seta $60 \mu \mathrm{~m}$; second segment $52 \times 17 \mu \mathrm{~m}$, its 2 terminal, delicately barbed spines $29 \mu \mathrm{~m}$ and $26 \mu \mathrm{~m}$. Outer margin of both endopodal segments with setules.

Leg 5 (Fig. 10c) with elongate, recurved, unornamented free segment $125 \times 18 \mu \mathrm{~m}$, ratio 6.94:1. Two terminal setae $30 \mu \mathrm{~m}$ and $60 \mu \mathrm{~m}$, seta on body adjacent to free segment $26 \mu \mathrm{~m}$. All setae smooth.

Leg 6 represented by 2 minute setae on genital area (Fig. 8d).
C olour of living specimens in transmitted light opaque grey, eye red.
M ale. Body (Fig. 10d) slender. Length $1.17 \mathrm{~mm}(1.09-1.21 \mathrm{~mm})$ and greatest width $0.32 \mathrm{~mm}(0.26-0.34 \mathrm{~mm})$, based on 10 specimens. Greatest dorsoventral thickness 0.30 mm . R atio of length to width of prosome 1.82:1. R atio of length of prosome to that of urosome $0.95: 1$, urosome slightly longer than prosome.

Somite bearing leg 5 (Fig. 10e) $52 \times 112 \mu \mathrm{~m}$. G enital somite $234 \times 203 \mu \mathrm{~m}$, ratio 1.15:1. Four postgenital somites from anterior to posterior $44 \times 65,68 \times 65$, 62×55, and $69 \times 52 \mu \mathrm{~m}$.

Caudal ramus $117 \times 21 \mu \mathrm{~m}$, resembling that of female.
Body surface smooth, as in female.
R ostrum like that of female. Antennule $294 \mu \mathrm{~m}$, long, segmented and armed as in female, but 3 long aesthetascs added (at points indicated by dots in Fig. 8i), distal aesthetasc on second segment $156 \mu \mathrm{~m}$ long. Antenna (Fig. 10f) similar to that of
female, but showing sexual dimorphism in having row of small spines along outer side of second segment.

Labrum, mandible, maxillule, and maxilla resembling those of female. M axilliped (Fig. 10 g) slender, 4 -segmented (assuming proximal part of claw to represent fourth segment). Second segment with 2 setae and row of spines. Claw $195 \mu \mathrm{~m}$ long with 2 very unequal proximal setae.
V entral area between maxillipeds and first pair of legs as in female.
Legs 1-4 segmented and armed as in female. Endopod of leg 1 (Fig. 10h) showing slight sexual dimorphism in third segment, this being held at slight angle to rest of endopod.

Leg 5 (Fig. 10i) with free segment $37 \times 8 \mu \mathrm{~m}$, ratio 4.63:1. Two terminal setae $39 \mu \mathrm{~m}$ and $30 \mu \mathrm{~m}$.

Leg 6 (Fig. 10j) posteroventral flap on genital somite bearing 2 setae.
C olour of living specimens as in female.
E tymology. The name protenta, a Latin adjective meaning stretched out or elongate, alludes to the slender form of the body.

Copepod associates of corals, their host genera, and localities, described since (and those not listed in) the publications of H umes (1979a, 1985c) and Humes \& D ojiri, 1982

Suborder Cyclopoida Burmeister, 1834
Cyclopidae Sars, 1913
E uryte bellatula H umes, 1992b (from M ontipora, Ambon, Banda, northeast Australia, New C aledonia); E. verecunda Humes, 1992b (from Porites, Panama (Pacific side).

C yclopinidae Sars, 1913
Pterinopsyllus stirpipes H umes, 1996a (from Galaxea, M adagascar).
Suborder Poecilostomatoida Thorell, 1959
C lausididae Embleton, 1901
H emicyclops columnaris H umes, 1984a (from Porites, Panama (Pacific side)).
Anchimolgidae Humes and Boxshall, 1996b
A marda goniastreae H umes, 1985b (from G oniastrea, C eram; F avia, northeastern Australia).

Anchimolgus abbreviatus Humes, 1991a. Also Humes (1996a) (from Acrhelia, northeastern Australia; Galaxea, N ew C aledonia); A. breviarius H umes, 1995 (from Goniopora, Banda); A. compressus Humes, 1996a (from Galaxea, New Caledonia, H almahera); A. conformatus Humes, 1995 (from Goniopora, Banda); A. exsetus H umes, 1991a (from Echinopora, northeastern Australia); A. gigas Humes, 1995, (from Goniopora, Banda); A. mimeticus H umes, 1995 (from Goniopora, Banda, H almahera); A. moluccanus Humes, 1996a (from Galaxea, H almahera, Banda); A. nasutus Humes, 1996a (from Galaxea, Halmahera, New C aledonia); A. tenaus Humes, 1991a. Also H umes (1996a) (from Acrheia, northeastern Australia; G alaxea, N ew Caledonia).

C erioxynus montastreae H umes, 1986 (from M ontastrea, northeastern Australia); C. oulophylliae H umes, 1986 (from Oulophyllia, northeastern Australia, Banda).

Dumbeana undulatipes gen. nov., sp. nov. (from Psammocora, new C aledonia).

Ecphysarion ampullulum Humes, 1993 (from Acropora, New Caledonia); E. spinulatum H umes, 1993 (from Acropora, Pulau G omumu).

E uxynus capulus H umes, 1992a (from Gardineroseris, Pulau G omumu).
H aplomolgus incolumis H umes, 1991b (from M ontipora, New Caledonia).
J amescookina redacta H umes, 1991a (from E chinopora, northeastern Australia).
J uxtandrianellus probus Humes, 1995b (from Leptoria, New C aledonia).
Lipochaetes extrusus gen. nov., sp. nov. (from Psammocora, New C aledonia).

Odontomolgus bulbalis H umes, 1991a (from M erulina, northeastern Australia); 0 . pumilus. H umes, 1992c (from G ardineroseris, northeastern Australia).

Panjakus directus Humes, 1995b (from Leptoria, New Caledonia); P. eumeces H umes, 1991a (from H ydnophora, northeastern Australia); P. necopinus H umes, 1995b (from Leptoria, N ew C aledonia).

Parandrianelus annulatus Humes, 1991a (from Hydnophora, northeastern Australia).

Schedomolgus exiliculus Humes, 1993 (from Acropora, New Caledonia); S. idanus H umes, 1993 (from Acropora, New C aledonia, Enewetak Atoll); S. insignellus H umes, 1993 (from Acropora, New C aledonia); S. majusculus H umes, 1993 (from Acropora, New C aledonia).

Scyphuliger aristoides H umes, 1993 (from Acropora, New Caledonia); S. concavipes Humes, 1991a. Also Humes (1993) (from Acropora, New Caledonia, northeastern Australia); S. eumorphus Humes, 1993 (from Acropora, New Caledonia, Ceram, H almahera); S. manifestus Humes, 1991a. Also Humes (1993) (from Acropora, New C aledonia, northeastern Australia); S. tenuatus (H umes, 1990). Also H umes (1991a, 1993) (from Acropora, New C aledonia, northeastern Australia).

U nicispina latigenitalis H umes, 1993 (from Acropora, New Caledonia).
R hynchomolgidae H umes \& Stock, 1972
D iallagomolgus productus Humes, 1979b (from Cyphastrea, New Caledonia); D. vicinus H umes, 1979b (from Cyphastrea, New C aledonia).

Emunoa protenta gen. nov., sp. nov. (from Psammocora, New Caledonia).

Indomolgus humesi Nair \& Pillai, 1987 (from Symphyllia, southeastern India).
Kombia curvata Nair \& Pillai, 1985 (from Porites, southeastern India); K. incrassata Humes, 1984b (from Porites, M oorea).

M andobius regalis H umes, 1991c (from Pectinia, New C aledonia).
M oluccomolgus lordus H umes, 1992a (from Gardineroseris, Pulau Gomumu). M onomolgus torulus Humes, 1984b (from Porites, M oorea).
Paramolgus ampullaceus Humes, 1992c (from Gardineroseris, northeastern Australia); P. angustus H umes, 1992a (from Gardineroseris, Pulau Gomumu); P. eparmatoides Humes, 1992a (from Gardineroseris, Pulau Gomumu); P. gibberulus Humes, 1992a (from Gardineroseris, Pulau Gomumu); P. pavonae Humes, 1994 (from Pavona, New Caledonia); P. setelus Humes, 1992a Also Humes (1994) (from Gardineroseris. Pulau Gomumu; Pavona, New C aledonia).

Pennatulicola corallophilus N air \& Pillai, 1985 (from Porites, Arabian Sea).
Pionomolgus gallicolus Dojiri \& Grygier, 1990 (from E chinopora, northeast Australia).

Sociellus torus H umes, 1992c (from Gardineroseris, northeastern Australia). Solitaricola bipes Stock, 1985 (from Flabellum, in 1,035 m, west of Sri Lanka). Pseudanthessiidae H umes \& Stock, 1972

P seudanthessius thorelli (Brady, 1880). Stock \& W einberg (1985) (from Cladocora, near Banyuls, France).

Incertae sedis
Parangium abstrusum H umes, 1985b (from Goniastrea, C eram).

Suborder Siphonostromatoida T horell, 1959

Asterocheridae G iesbrecht, 1899
Asterocheres longisetosus Nair \& Pillai, 1984 (from Porites, Arabian Sea); A. maxillatus Stock, 1989. Also Stock (1987) (from M anicina, M ontastrea, C uraçao); A. stocki N air \& Pillai, 1984 (from Acropora, A rabian Sea.

Asteropontella foliata Stock, 1989 (from M ontastrea, Curaçao).
A steropontius iuxtus Stock, 1989 (from M eandrina, Curaçao); A. laccadivensis N air \& Pillai, 1984 (from Acropora, A rabian Sea); A. proximus Stock, 1987 (from C olpophyllia, Curaçao)

Asteropontopsis faviae Stock, 1987 (from F avia, Curaçao).
H ermacheres diploriae Stock, 1987 (from Diploria, Curaçao); H . montastreae Stock, 1989 (from M ontastrea, Curaçao).

H etairosyna bucculentus H umes, 1996a (from Galaxea, M adagascar); H . galaxeae Humes, in press b (from Galaxea, Halmahera); H. laciniata Humes, 1991b (from M ontipora, New C aledonia, northeastern Australia, M adagascar); H. sororia Humes, 1991b (from M ontipora, M adagascar, New Caledonia, Ceram, northeastern Australia); H. terpna H umes, 1991b (from M ontipora, New Caledonia, Ambon, Banda, Enewetak Atoll, northeastern Australia, M adagascar); H. wedensis Humes, 1996a (from Galaxea, H almahera).

M adacheres serrulatus H umes, 1996a (from Galaxea, M adagascar).
M eandromyzon coronatum Stock, 1989 (from M eandrina, C uraçao).
T ychomyzon petalum H umes, 1991b (from M ontipora, northeastern Australia).
C oralliomyzontidae Humes \& Stock, 1991
C oralliomzon tenens H umes \& Stock, 1991 (from T urbinaria, M adagascar).
Suborder H arpacticoida Sars, 1903
Peltidiidae Sars, 1904
Alteuthel opsis corallina H umes, 1981a. Also H umes (1984c, 1991a, 1992c) (from Astreopora, M erulina, Platygyra, M adagascar; Pocillopora, Acropora, New Caledonia; Goniastrea, Ceram: M erulina, Gardineroseris, Stylophora, northeastern Australia).

T egastidae Sars, 1904
T egastes acroporanus H umes, 1981b (from A cropora, Enewetak A toll); T . gemmeus Humes, 1984c (from Cyphastrea, M ontipora, H awaii); T. george M arcus and M asry, 1970 (from Stylophora, Red Sea (Gulf of Elat)); T. paulipes Humes, 1984c (from Pocillopora, M oorea).

ACKNOWLEDGEMENTS

Field work in New Caledonia during June-August 1971 and the subsequent study of the new copepods were supported by grants G B-8381X and BSR -8514561 from the National Science Foundation of the U nited States.

References

Dojiri M, Grygier MJ. 1990. Pionomolgus gallicolus, gen. et sp. nov. (Poecilostomatoida: Lichomolgidae), a gallinducing copepod of a scleractinian coral from Australia. Australian J ournal of Z oology 37: 695-703.
Humes AG. 1960. New copepods from madreporarian corals. Kieler M eeresforschungen 16: 229-235.
Humes AG. 1974. Cyclopoid copepods associated with the coral genera Favia, Favites, Platygyra, and M erulina in New Caledonia. Pacific Science 28: 383-399.
Humes AG. 1978. Lichomolgid copepods (Cyclopoida) associated with the coral genus M ontipora in the M oluccas. Publications of the Seto M arine Biological Laboratory 24: 387-407.
Humes AG. 1979a. C oral-inhabiting copepods from the M oluccas, with a synopsis of cyclopoids associated with scleractinian corals. Cahiers de Biologie M arine 20: 79-107.
Humes AG. 1979b. Cyclopoid copepods (Lichomolgidae) associated with the scleractinian Cyphastrea in New C aledonia. Pacific Science 33: 195-206.
Humes AG. 1981a. H arpacticoid copepods associated with C nidaria in the Indo-W est Pacific. J ournal of Crustacean Biology 1: 227-240.
Humes AG. 1981b. A new species of T egastes (Copepoda: H arpacticoida) associated with a scleractinian coral at Enewetak Atoll. Proceedings of the Biological Society of W ashington 94: 254-263.
Humes AG. 1984a. Hemicyclops columnaris sp. n. (Copepoda, Poecilostomatoida, Clausidiidae) associated with a coral in Panama (Pacific side). Zoologica Scripta 13: 33-39.
Humes AG. 1984b. Copepods associated with the scleractinian coral Porites in French Polynesia. Cahiers de Biologie M arine 25: 181-195.
Humes AG. 1984c. H arpacticoid copepods associated with cnidarians in the tropical Pacific O cean. Zoologica Scripta 13: 209-221.
Humes AG. 1985a. Cnidarians and copepods: a success story. T ransactions of the American M icroscopical Society 104: 313-320.
Humes, AG. 1985b. Poecilostomatoid copepods parasitic in the scleractinian coral genus Goniastrea in the M oluccas. Publications of the Seto M arine Biological Laboratory 30: 277-286.
Humes AG. 1985c. A review of the X arifiidae (C opepoda, Poecilostomatoida), parasites of scleractinian corals in the Indo-Pacific. Bulletin of M arine Science 36: 467-632.
Humes AG. 1986. T wo new species of Cerioxynus (Copepoda: Poecilostomatoida) parasitic in corals (Scleractinia: Faviidae) in the South Pacific. Systematic Parasitology 8: 187-198.
Humes AG. 1990. Lichomolgid copepods of the genus Schedomolgus (Poecilostomatoida) associated with the scleractinian coral A cropora cymbicyathus (Brook) in New Caledonia. Beaufortia 41: 121-127.
Humes AG. 1991a. Copepods associated with scleractinian corals on the Great Barrier Reef, northeastern Australia, with a key to the genera of the Lichomolgidae. J ournal of Natural H istory 25: 1171-1231.
Humes AG. 1991b. Copepoda associated with the scleractinian coral genus M ontipora in the Indo-Pacific. Proceedings of the Biological Society of W ashington 104: 101-137.
Humes AG. 1991c. M andobius regalis gen. et sp. n. (Copepoda: \{Poecilostomatoida: Lichomolgidae) associated with the coral Pectinia lactuca in New Caledonia. Zoologica Scripta 20: 277-282.
Humes AG. 1992a. Copepods (Poecilostomatoida: Lichomolgidae) associated with the scleractinian coral Gardineroseris planulata in the M oluccas. Invertebrate T axonomy 6: 303-335.
Humes AG. 1992b. E uryte verecunda, new species (C opepoda: C yclopoida), associated with the coral Porites lobata on the Pacific coast of Panama. Proceedings of the Biological Society of W ashington 105: 268-274.
Humes AG. 1992c. Copepoda associated with the coral Gardineroseris planulata (D ana) on the Great Barrier R eef, northeastern Australia. H ydrobiologia 234: 41-57.
Humes AG. 1993. Poecilostomatoid copepods associated with the scleractinian coral Acropora in the tropical western Pacific 0 cean. Invertebrate T axonomy 7: 805-857.
Humes AG. 1994. T wo species of Paramolgus (Copepoda: Poecilostomatoida: Lichomolgidae) associated with the scleractinian Pavona in New Caledonia with a key to females of Paramolgus. B eaufortia 44: 1-9.
Humes AG. 1995a. New species of Anchimolgus (Copepoda: Poecilostomatoida: Lichomolgidae) associated with the scleractinian coral Goniopora in the southwest Pacific. J ournal of Natural History 29: 65-84.
Humes AG. 1995b. Copepods from the coral Leptoria tenuis in New Caledonia. Cahiers de Biologie M arine 36: 69-80.
Humes AG. 1996a. Copepoda associated with the scleractinian Galaxea in the Indo-Pacific. Publications of the Seto M arine Biological Laboratory 37: 1-49.
Humes AG, Boxshall GA. 1996b. A revision of the lichomolgoid complex (C opepoda: Poecilostomatoida) with the recognition of six new families. Journal of N atural H istory $\mathbf{3 0}$: 175-227.
Humes AG, Dojiri M. 1982. X arifiidae (Copepoda) parasitic in Indo-Pacific scleractinian corals. Beaufortia 32: 139-228.
Humes AG, Gooding RU. 1964. A method for studying the external anatomy of copepods. Crustaceana 6: 238-240.
Humes AG, Stock JH. 1972. Preliminary notes on a revision of the Lichomolgidae, cyclopoid copepods mainly associated with marine invertebrates. Bulletin Z oologisch M useum, U niversiteit van Amsterdam 2: 121-133.

Humes AG, Stock JH. 1991. Coralliomyzontidae, fam. n. (Copepoda: Siphonostomatoida), associated with scleractinian corals in M adagascar. Bulletin Z oologisch M useum, U niversiteit van Amsterdam 13: 15-24.
Marcus A, Masry D. 1970. Tegastes georgei n. sp. a new harpacticoid (Crustacea, Copepoda), found on corals in the Gulf of Eilat. I srae J ournal of Z oology 19: 169-174.
Nair BU, Pillai NK. 1984. On three new species of asterochereid copepods, with a redescription of Indomyzon quasimi U mmerkutty. Records of the Z oological Survey of India 81: 357-372.
Nair BU, Pillai NK. 1985. T hree new species of copepods associated with South Indian invertebrates. C rustaceana 50: 27-38.
Nair BU, Pillai NK. 1987. Description of a new species of Indomolgus (Copepoda: Lichomolgiae) associated with corals in the Bay of Bengal, South India. J ournal of Natural History 21: 405-409.
Sewell RBS. 1940. Copepoda, H arpacticoida. J ohn M urray Expedition Scientific Reports 7: 117-382.
Stock JH. 1985. A new poecilostomatoid copepod associated with solitary deep-water corals. H ydrobiologia 120: 129-132.
Stock JH. 1987. Copepoda Siphonostomatoida associated with West Indian hermatypic corals 1: associates of Scleractinia: Faviinae. Bulletin of M arine Science 40: 464-483.
Stock JH. 1989. Copepoda Siphonostomatoida associated with West Indian hermatypic corals, 2. Studies in honour of Dr. Pieter W agenaar H ummelinck. Foundation for Scientific Research in Surinam and the Netherlands Antilles. Amsterdam 123: 145-169.
Stock JH, Weinberg S. 1985. P seudanthessius thorelli (Brady, 1880) (Copepoda, Poecilostomatoida, Pseudanthesiidae): redescription et présence en M éditerranée. Vie et M ilieu 35: 93-97.
Vaughan TW, WellsJH. 1943. R evision of the suborders, families, and genera of the Scleractinia. Geological Society of America Special Papers 44: i-xv, 1-363.
Veron JEN. 1986. Corals of Australia and the Indo-Pacific. North R yde, Australia. Angus \& R obertson: 1-644.

