Enhydrosoma (Copepoda, Harpacticoida): An Update and Two New Species
Author(s): David Thistle
Published by: Blackwell Publishing on behalf of American Microscopical Society
Stable URL: http://www.jstor.org/stable/3225649

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=black.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

ENHYDROSOMA (COPEPODA, HAR Pacticoida): AN UPDATE AND TWO NEW SPECIES

DAVID THISTLE

Department of Oceanography, Florida State University, Tallahassee, Florida 32306

Although eight new species (Bodin, 1979) and several keys (Lang, 1965; Borutzky, 1971; Coull, 1975) have been published since Lang’s (1948) mono-

1 S. S. Bell and P. Ringold contributed the specimens of En hydrosoma woodini n. sp. B. C. Coull supplied a critical paper and commented on the manuscript. This research was sponsored by the Office of Naval Research Contract No. N00014-75-C0201.

TABLE 1

<table>
<thead>
<tr>
<th>Species</th>
<th>P1 Exp</th>
<th>P2 Exp</th>
<th>P3 Exp</th>
<th>P4 Exp</th>
<th>P5 Exp</th>
<th>P5 (\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>baruchii</td>
<td>0.0021</td>
<td>1.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>baruchii</td>
<td>0.0022</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>baruchii</td>
<td>0.0023</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>hopkinsi</td>
<td>0.0022</td>
<td>1.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>hopkinsi</td>
<td>0.0023</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>hopkinsi</td>
<td>0.0024</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>curvirostre*</td>
<td>0.0022</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>curvirostre*</td>
<td>0.0023</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>curvirostre*</td>
<td>0.0024</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>bifurcarostratum</td>
<td>0.0022</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>bifurcarostratum</td>
<td>0.0023</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>bifurcarostratum</td>
<td>0.0024</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>caeni</td>
<td>0.0022</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>caeni</td>
<td>0.0023</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>caeni</td>
<td>0.0024</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>sordidum</td>
<td>0.0022</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>sordidum</td>
<td>0.0023</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>sordidum</td>
<td>0.0024</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* nigrita</td>
<td>0.0022</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* nigrita</td>
<td>0.0023</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* nigrita</td>
<td>0.0024</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* nicolarum</td>
<td>0.0022</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* nicolarum</td>
<td>0.0023</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* nicolarum</td>
<td>0.0024</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* propinquum</td>
<td>0.0022</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* propinquum</td>
<td>0.0023</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* propinquum</td>
<td>0.0024</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* radkhorakhsni</td>
<td>0.0022</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* radkhorakhsni</td>
<td>0.0023</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* radkhorakhsni</td>
<td>0.0024</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* salient</td>
<td>0.0022</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* salient</td>
<td>0.0023</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* salient</td>
<td>0.0024</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* wilsonii</td>
<td>0.0022</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* wilsonii</td>
<td>0.0023</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>* wilsonii</td>
<td>0.0024</td>
<td>0.020</td>
<td>0.0122</td>
<td>0.020</td>
<td>0.020</td>
<td></td>
</tr>
</tbody>
</table>

* See Systematic Notes.
graph, no summary of the morphological variability within *Enhydrosoma* has been given. I have made a compilation of this variability in Table I and have used it to place two new species; i.e., *Enhydrosoma franklini* n. sp. and *Enhydrosoma woodini* n. sp. Further, although *E. franklini* n. sp. is an *Enhydrosoma*, the description of the genus had to be revised in order to accommodate this new species.

All figures were made using a camera lucida. The following abbreviations were used: A1, antennule; A2, antenna; Md, mandible; Mx, maxilla; Mx1, maxillula; Mxp, maxilliped; Exp, exopod; Enp, endopod; P1–P5, pereopods 1–5; Benp, baseoendopodite; CR, caudal ramus. Body length was measured from the tip of the rostrum to the posterior edge of the telson. The caudal rami length/width ratios in Table I were calculated by measuring the original published figures; the width was measured at the widest point of the ramus.

Systematic Account

Family Cletodidae T. Scott, 1904

Genus Enhydrosoma Boeck, 1872

Enhydrosoma n. g. Boeck, 1892, p. 53. (part.)

Synonymy. Cletodes n. g. Brady, 1872, p. 473. (part.), Cletodes many authors (part.).

Redescription

Body elongate. Female genital double segment transversely septate dorsally. Anal operculum semicircular. Caudal ramus shape and length variable; may be sexually dimorphic. A1 female 5-segmented (4-segmented in *E. nicobaricum*) aesthetasc on segment 3; haplocer in male. A2 with allosbasis; exopod 1-segmented (reduced to a seta in *E. barnishi*, *E. bifurcarostratum*, and *E. curvirostre*). P1–P4 exopod 3-segmented (segments 2 and 3 fused in *E. franklini* n. sp.), all segments short. P1–P4 endopod 2-segmented (P4 Enp 1-segmented in *E. birsteini*, *E. radhakrishnai*, and *E. uniarticulatum*). Male P3 endopod may be modified. P5 exopod may be fused to baseoendopodite. Females with one egg sac. Marine and fresh-water species.

Species Included (See Table I). *Incertae sedis. Enhydrosoma pontica* Jakubisiak, 1938, by Lang (1948); Por (1960) considers this species to be a junior synonym of *E. sordidum*. *E. tunisensis* Monard, 1935 by Bodin (1979).

Remarks. Following Coull (1975), *Enhydrosoma vicinum* Por, 1967 is considered to be a junior synonym of *E. hopkinsi* Lang, 1965. Following Bodin (1979), *E. wellsi* Bodin, 1968 is considered to be a junior synonym of *Cletodes latirostris* Drzycimski, 1967. Following Lang (1965), *E. ivitteae*, *E. mangroviae*, *E. gerlachi*, *E. minimum*, *E. guaratubae*, and *E. cananeiae* Jakobi, 1955 are ignored because in the original descriptions, figures and text do not agree.

Enhydrosoma franklini n. sp.

(Figs. 1, 2)

Synonymy. None.

Holotype. Adult female (0.52 mm long) from subtidal sand, 2 m depth, St. George Sound, Franklin County, Florida (29°54.0′N, 84°37.8′W), dissected, parts mounted on slides (USNM no. 173878). Named for the county of the type locality.
FIG. 1. Enhydrosoma franklini n. sp. Female holotype: C, lateral view; I, genital field. Female paratype: A, dorsal view; B, A1; D, MxI; E, A2; F, Md; G, Mx; H, Mxp; J, CR. Scale lines represent 0.01 mm.
Allotype. Adult male from same locality, dissected, parts mounted on slides (USNM no. 173879).

Paratypes. Females from same locality, dissected, parts mounted on slides. 7 ♀ ♂, 7♂ ♀ in vial (USNM no. 173880).

Description

Female. Body width not greatly reduced posteriorly. Lateral margins urosome segments 3–6 with seta-bearing processes (Fig. 1C). Rostrum not set off. Caudal rami 1.8 times as long as wide; 1 principal and 2 accessory terminal setae, 2 lateral setae and 1 dorsal seta; lateral margins incised (Fig. II).

A1 (Fig. 1A). 5-segmented, aesthetasc on segment 3.

A2 (Fig. 1B). With allobasis, exopod 1-segmented with 2 setae; free endopod article with 6 major setae.

Md (Fig. 1E). Precoxa with denticulate pars incisiva, bears 2 setae. No lacinia, no pars molaris. Coxa-basis with 3 setae.

Mxl (Fig. 1D). Artihrine of precoxa with 1 surface seta and 6 distal setae. Coxa with 2 apical setae. Basis with 4 apical setae and 1 surface seta.

Mx (Fig. 1F). Syncoxa with 2 endites, each with 2 setae. Basis with strong seta flanked by 2 slender setae. Endopod represented by 2 setae.

Mxp (Fig. 1G). Basis with 1 seta on inner distal corner. Endopod segment 1 with lateral and medial setal rows; segment 2 a claw.

P1–P4 (Figs. 2A–2D). Setal formulae given in Table I; P2–P4 exopod segments 1 and 2 fused, but setal formulae given as if they were free.

P5 (Fig. 2E). Benp not fused to Exp, medial projection bears 1 major seta terminally and a row of small setae, 1 major (2 total) medial seta; pointed process above plane of medial Benp projection. Exp with 1 terminal and 2 lateral setae; two lateral indentations.

Male. CR as in female; slightly longer than length of last 2 somites combined. A1 haplocer (Fig. 2G). P2–P4 Exp segments 1–2 fused. P1–P4 setal formulae as in female. P3 unmodified (Fig. 2F). P5 Benp not fused to Exp, with 2 major (3 total) lateral setae; exopod with 1 terminal and two lateral setae and two lateral projections (Fig. 2H).

Remarks. Enhydrosoma franklini n. sp. differs from other Enhydrosoma species in the fusion of P2–P4 exopod segments 1 and 2. It is known only from the type locality.

Enhydrosoma woodini n. sp. (Figs. 3, 4)

Synonymy. None.

Holotype. Adult female (0.45 mm long) from an intertidal Spartina marsh, Belle Creek, Carteret County, Beaufort, North Carolina (34°46’N, 76°40’W), dissected, parts mounted on slides (USNM no. 173881). The specimens were collected by S. S. Bell and P. Ringold. The species has been named for P. Ringold’s major professor, Dr. S. A. Woodin, a noted ecologist.

Allotype. Adult male from the same locality, dissected, parts mounted on slide (USNM no. 173882).

Paratypes. Specimens from same locality, dissected, and mounted on slides. 12 ♀ ♂ and 9♂ ♀ in vial (USNM no. 173883).
Description

Female. Body width not greatly reduced posteriorly. Lateral margins of cephalosome and body segments with seta-bearing processes. Rostrum not set off. CR 5.3 times as long as wide; 1 principal and 2 accessory terminal setae, 2 lateral setae and 1 dorsal seta (Fig. 3H).
Fig. 3. *Enhydrosoma woodini* n. sp. Female holotype: A, lateral view; B, A1; C, A2. Male allotype: D, Md; G, Mxp. Female paratype: F, Mx; H, dorsal view. Composite: E, Mxl. Scale lines represent 0.01 mm.

A1 (Fig. 3B). 5-segmented, aesthetasc on segment 3.

A2 (Fig. 3C). With allobasis, exopod 1-segmented with 2 setae.

Md (Fig. 3D). Precoxa with denticulate *pars incisiva*, with 2 setae. No *lacinia*, no *pars molaris*. Coxa-basis with 3 setae.

Mxl (Fig. 3E). Arthrite of precoxa with 2 apical and 4 surface setae. Basis with 5 setae.

Mx (Fig. 3F). Syncoxa with 2 endites, each with 2 setae. Basis with robust seta flanked by two slender setae apically. Enp represented by 2 setae.

Mxp (Fig. 3G). Basis lacks seta on inner distal corner. Enp 1-segmented with medial setal row; segment 2 a claw.
THISTLE—ENHYDROSOMA UPDATED 391

Fig. 4. Enhydrosoma woodini n. sp. Female holotype: A–D, H, P1–P5. Male allotype: E, A1; F, CR; G, P3; I, P5. Scale line represents 0.01 mm.

P1–P4 (Figs. 4A–4D). Setal formulae given in Table I.
P5 (Fig. 4H). Exp not fused to Benp. Benp medial projection with 3 setae. Exp with 2 terminal setae.

Male. CR setation as in female (Fig. 4F). A1 haplocer (Fig. 4E). P1–P4 setal formulae as in female. P3 unmodified (Fig. 4G). P5 as in female except that Benp inner projection bears 2 stout setae (Fig. 4I).

Remarks. Enhydrosoma woodini n. sp. differs from other Enhydrosoma species in the setation of the female P5. E. woodini is most similar to E.
longifurcatum; it differs in having 2 rather than 3 P5 Exp setae and a free P5 Exp in the male. Known only from the type locality.

Systematic Notations and Sources of Table I Entries

E. baruchi Coull, 1975. Original description. Enhydrosoma specimens which approximate E. baruchi in morphology have been found in Narragansett Bay, Rhode Island, by J. B. Frithsen.
E. bucholtzi Boeck, 1872. All entries from Lang (1948) except for the P3 Exp which comes from Sars (1909).
E. curticauda Boeck, 1872. All entries from Lang (1948) except female P3 and P4 setal formulae which are from Sars (1909). Tschislenko’s (1967) specimens have female P3 Enp segment 3 with 2 setae rather than 3 as in Lang (1948) and Sars (1909). Tschislenko’s specimens have the male P5 inner expansion of Benp with 2 setae rather than 3 as in Sars (1909) and Lang (1948). Tschislenko’s specimens are unlikely to be E. curticauda.
E. curvirostre (Scott, 1894). Scott described this species as Cletodes curvirostris. Lang (1936) transferred the species to Enhydrosoma; and in 1948, he changed the species name to E. curvirostre (Lang, 1948). The entries for A1, A2 Exp, P1, P4, female P5, and CR dimensions come from the original description of Scottish material. The 6-segmented A1, the presence of a seta on the distomedial corner of P1 Exp segment 2, and the presence of a distomedial seta on P4 Enp segment 1 are otherwise unknown in the genus. Sars (1909) described an otherwise similar specimen as Cletodes curviostris which did not have the anomalous features. Lang (1936) transferred the species to Enhydrosoma from Cletodes based on material morphologically similar to that of Sars. The second entry for E. curvirostre is based on Sars’ (1909) treatment which Lang (1948) follows. If Scott’s (1894) description is accurate, the differences between his specimens and those of Sars’ are too great to exist within one species. A revisional treatment of this species goes beyond the intended scope of the present paper.

Bodin (1970, 1973) has found specimens which he identified as E. curvirostre. These specimens differ from the descriptions of Scott (1894) and Sars (1909). Bodin feels that the variability is intraspecific, but no studies of variability of these characters have been made within the genus. Therefore, his reports have not been used in compiling Table I.
E. franklini n. sp. Original description.
E. gariene Gurney, 1930. Original description. Gurney (1930) described females with short CR (L/W = 1.5) and an apparently conspecific male with long CR (L/W = 4.4). Lorenzen (1969) confirmed this sexual dimorphism. He found specimens of males and females which fit E. gariene. Males have long CR. Females had both short (92 specimens) and long (19 specimens) CR. Further, Lorenzen found a long CR male copulating with a short CR female; see also Monchenko (1967).
E. latipes (A. Scott, 1909). All entries are from the original description, except P3 Enp and P4 entries which come from Lang (1948), and the male P3 Enp and P5 entries which come from Wells (1967). Wells (1967) illustrates a female P5 which corresponds in outline to that figured by Scott (1909) but which bears 3 setae rather than 2.

E. longifurcatum Sars, 1909. These entries come from the original description: A1, A2 Exp, P1, P2, female P5, and CR. Male P5 from Lang (1948). Roe (1959) illustrates parts of a male specimen from Lough Ine, Ireland. The P1, P2 setal formulae agree with the original description. The number of setae on P3 and P4 Enp, the furca, and the P5 agree with Lang (1948). Given this support for Roe’s identification, I have used her figures to fill the remaining entries.

E. micrurum Monard, 1928. All entries are from the original description, except P1 and P3 Enp which come from Lang (1948).

E. migoti Monard, 1926. All entries come from the original description, except female P5 which comes from Monard (1928). Monard (1926) described a male with a 5-segmented A1; Monard (1928) described a female with a 4-segmented A1.

E. nicobaricum Sewell, 1940. Original description.

E. propinquum (Brady, 1880). The following entries are from the original description: A2 Exp, P1, female P5, and CR; Brady appears to have misinterpreted the A1 segmentation because he illustrates many more than five segments. Sars (1909) assigned Norwegian specimens to E. propinquum. Sars’ description fits the original description where the two descriptions overlap; I have used Sars’ description to fill these entries: A1, P3, male P3 Enp, and male P5. Monard’s (1928) description of Mediterranean specimens which he assigns to E. propinquum corresponds to Brady’s and Sars’ where the descriptions overlap; I have used Monard’s setal counts for P2 and P4. Mielke (1975) described a specimen from the island of Sylt (North Sea) which fits this composite description; see also Por (1960), Marinov (1971), and Apostolov (1973). Pallares’ (1975) specimens have 2 setae on P3 and P4 Enp and are unlikely to be E. propinquum.

E. sarsi (T. Scott, 1904). All entries come from Sars (1920) except male P5 which comes from Lang (1948); see Por (1960). Bodin (1970) assigns specimens to E. sarsi which have male P3 Enp 2-articled rather than 3-articled.

E. sordidum Monard, 1926. The CR L/W entry comes from original description; the remaining entries from Monard (1928). Although Monard (1926) reports the female P5 Exp as having 3 setae, his figure and 1928 treatment show 4 setae. Wells (1965) assigned specimens to E. sordidum that had 4 large setae on the female P5 Exp. Monard’s (1926) figure shows 3 large setae and 1 small seta. Although the setation of the inner lobe of the Benp is similar to that originally described, Wells’ specimens have elongate CR (L/W = 7) versus the short CR (L/W = 2) originally described. Lorenzen (1969) found females with long and short CR in a single population of E. gariene. Wells’ specimens suggest that such dimorphism also occurs in E. sordidum; see also Por (1960).

Marinov (1971) illustrates a specimen with a P5 like that of E. sordidum. However, P1 and P2 Exp segment 3 have 4 setae rather than 5 as in the
original description. In terms of the characters in Table I, Marinov's specimen corresponds to *E. curticauda* Boeck except for the fusion of P5 Exp.

E. uniarticulatum Borutzky, 1928. Original description. See also Shen & Tai (1962).

E. woodini n. sp. Original description.

Key to the Females of Enhydrosoma
(Modified from Coull, 1975)²

1. Caudal rami at most as long as last somite 2
 Caudal rami longer than last somite 7
2. Exp A2 well developed, with 2 setae ... 3
 Exp A2 rudimentary, with 1 seta .. *E. buchholtzi*
3. Exp and Benp P5 not confluent .. 4
 Exp and Benp P5 confluent .. *E. gariene*
4. Enp P4 2-segmented ... 5
 Enp P4 1-segmented ... *E. uniarticulatum*
5. Exp P5 with 1 terminal and 2 outer setae *E. hopkinsi*
 Exp P5 with 1 terminal and 3 outer setae *E. propinquum*
 Exp P5 with 3 terminal and 1 outer setae 6
6. Enp P1 distal segment with 3 setae ... E. micrurum
 Enp P1 distal segment with 2 setae ... *E. curticauda*
7. Exp A2 rudimentary with 1 seta .. 8
 Exp A2 well developed with 2 setae ... 10
8. Exp and Benp P5 confluent .. 9
 Exp and Benp P5 not confluent .. *E. curvirostre*
9. Enp P3–P4 distal segment with 3 setae *E. barnishi*
 Enp P3–P4 distal segment with 2 setae *E. bifurcarostratum*
10. Enp P1 distal segment with 2 setae ... 11
 Enp P1 distal segment with 3 setae ... 16
11. Exp P1 distal segment with 4 setae .. 12
 Exp P1 distal segment with 5 setae ... *E. sordidum*
12. Enp P4 distal segment with 2 setae ... 13
 Enp P4 distal segment with 3 setae ... 14
13. Enp P4 1-segmented ... *E. radhakrishnai*
 Enp P4 2-segmented ... *E. franklini* n. sp.
14. Exp and Benp P5 not confluent .. 15
 Exp and Benp P5 confluent .. *E. caeni*
15. Number of major setae on P5 Benp and Exp, respectively:
 2:2 ... *E. nicobaricum*
 2:3 .. *E. lacunae*
 3:2 .. *E. woodini* n. sp.
 3:3 ... *E. longifurcatum*
 3:4 .. *E. littorale*
16. Number of setae P4 Exp and Enp distal segments, respectively:
 4:3 .. *E. latipes*

²*Enhydrosoma styllicaudatum* is omitted because no female has been described.
17. Exp and Benp P5 confluent
Exp and Benp P5 not confluent
18. Number of major setae on P5 Benp and Exp, respectively:
2:5
3:6

17. E. sarsi
18. E. migoti

KEY TO THE MALES OF ENHYDROSOMA
(Modified from Coull, 1975)3

1. Exp A2 rudimentary, with a single seta
Exp A2 well developed, with 2 setae
2. Exp and Benp P5 confluent
Exp and Benp P5 not confluent
3. Exp portion P5 with 2 setae
Exp portion P5 with 3 setae
4. Enp P3 2-segmented
Enp P3 3-segmented
5. Caudal rami shorter than last 2 somites combined
Caudal rami at least as long as last 2 somites combined
6. Exp and Benp P5 confluent
Exp and Benp P5 not confluent
7. Caudal rami semi-oval with small knob at outer proximal corner

Caudal rami tapering gradually, with no knobs
8. Enp P1 1-segmented
Enp P1 2-segmented
9. Exp and Benp P5 with 3 setae each
Exp and Benp P5 with 2 setae each
10. Exp and Benp P5 not confluent
11. Exp and Benp P5 confluent
12. Number of major setae on P5 Benp and Exp, respectively:
2:2
0:4
3:3

E. migoti
E. franklini n. sp.
E. latipes
E. birsteini
E. longifurcatum
E. baruchi

3 Enhydrosoma micrurum, E. nicobaricum, E. sordidum, and E. uniarticulatum are omitted because the male P5 has not been described.

4 The male of Enhydrosoma lacunae cannot be distinguished from that of E. woodini n. sp. on the basis of the published description, although the females differ in species-level characters.
16. Caudal rami shorter than last somite; basis Mxp with plumose seta at inner distal corner.. E. hopkinsi
Caudal rami longer than last somite; basis Mxp without seta at inner distal corner .. E. littorale

LITERATURE CITED

