Description of a new species of *Zosime* Boeck, 1872 (Copepoda: Harpacticoida: Zosimeidae) from the Great Meteor Seamount, representing one of the few eurybathic Harpacticoida among the distinct plateau and deep-sea assemblages

Stefan Koller* and Kai Horst George*

Abstract

In 1998, qualitative samples of meiofauna were taken at the Great Meteor Seamount, one of the largest Atlantic seamounts. The present contribution provides the result of a comparative investigation of Zosimeidae Seifried, 2003. Twelve species were detected, all belonging to the genus *Zosime* Boeck, 1872. Just one species, namely *Z. bergensis* Drzycimski, 1968, is scientifically known from the Norwegian coast, while all remaining 11 species are new to science. The present paper provides the description of the most abundant species *Z. anneae* sp. nov. The new taxon may be characterized by six apomorphies: (i) P4 exp1 with outer spine remarkably dwarfed; (ii) FR elongate between furcal setae I and II; (iii) furcal seta I minute and (iv) displaced ventrally; (v) furcal seta II dwarfed; (vi) furcal seta VII dwarfed. Chorological comparison points to a perhaps worldwide distribution of *Zosime*, and even single species show wide distribution ranges. *Z. anneae* sp. nov. presents a distribution from the seamount’s plateau down to its rise, showing eurybathic properties. Same flexibility is concluded with respect to other abiotic variables like e.g. sediment structure, oxygen demand, salinity, and temperature. Zosimeidae from the Great Meteor Seamount relativise the formerly supposed distributional restriction of harpacticoid taxa to particular topographic regions of the Great Meteor Seamount.

Keywords: Taxonomy, Meiofauna, Crustacea, Deep Sea, Atlantic

Introduction

* Senckenberg am Meer, Abt. Deutsches Zentrum für Marine Biodiversitätsforschung DZMB, Südstrand 44, D-26382 Wilhelmshaven, Germany; e-mail: kgeorge@senckenberg.de
made possible (George & Schminke 2002). Within the meiofauna, the harpacticoid copepods play an important role, since they are generally the second most abundant group after the nematodes (Hicks & Coull 1983).

First qualitative investigations of the harpacticoid meiofauna detected a remarkable high number of unknown species (96 %), coupled with a clear distinction between a plateau- and a deep-sea fauna, with only low percentage of overlapping species (6–7 %) (George & Schminke 2002, George 2004, Plum & George 2009). Gad (2009) confirmed this kind of distinction for certain nematode taxa. In contrast, the present examination of Zosimeidae of the GMS at species level reveals a remarkably high number of species present on the plateau as well as at surrounding deep-sea localities. Up to date, Zosimeidae comprise only 17 species worldwide. The most abundant species of this taxon at the Great Meteor Seamount, *Zosime annaeae* sp. nov., is described.

Material and Methods

The material was collected during expedition M42/3 of RV METEOR in 1998 at the Great Meteor Seamount in the northeast Atlantic Ocean (Pfannkuche et al. 2000) (Fig. 1). For meiobenthic sampling methods and sample treatment see George & Schminke (2002). The Zosimeidae were sorted and transferred on slides using glycerol as embedding medium. The material is stored at Senckenberg am Meer, Abt. DZMB, Südstrand 44, D–26382 Wilhelmshaven, Germany. Dissection of the described material was done under a Leica M12.5 dissection microscope. Dissected parts were mounted on different slides. The type material is deposited in Senckenberg Forschungsinstitut und Naturmuseum (SMF), Frankfurt/Main, Germany.

Abbreviations used in the text: A1, antennula; A2, antenna; aes, aesthetasc; benp, basoendopod; enp, endopod; exp, exopod; enp-1 (2,3), proximal (middle, distal) segment of endopod; exp-1 (2,3), proximal (middle, distal) segment of exopod; FR, furcal ramus/rami; GF, genital field; GMS, Great Meteor Seamount; md, mandibula; mxl, maxillula; mx, maxilla; mxp, maxilliped; P1-P6, first to sixth swimming leg.

Results

Family: Zosimeidae Seifried, 2003

Genus: Zosime Boeck, 1872

Type species: *Z. typica* Boeck, 1872. Additional species: see Table 2.
Type material: Female holotype, dissected and mounted on 12 slides, Coll. No. SMF 37002/1-12, and 9 paratypes (PT): PT1 (allotype), male, dissected and mounted on 9 slides, Coll. No. SMF 37003/1-9; PT2, female, mounted on 2 slides, Coll. No. SMF 37004/1-2; PT3, female, mounted on 1 slide, Coll. No. SMF 37005; PT4, female, mounted on 1 slide, Coll. No. SMF 37006; PT5, female, mounted on 1 slide, Coll. No. SMF 37007; PT6, male, mounted on 1 slide, Coll. No. SMF 37008; PT7, male, mounted on 1 slide, Coll. No. SMF 37009; PT8, male, mounted on 2 slides, Coll. No. SMF 37010/1-2; PT9, male, mounted on 1 slide, Coll. No. SMF 37011.

Type Locality: Northeast Atlantic Ocean, Great Meteor Seamount, Station #492, 29°58.5'N/28°29.7'W, water depth 294 m, sampled on 09.09.1998.

Etymology: Zosime anneae sp. nov. is fondly dedicated to Miss Anne Springsgut (Frankfurt, Germany).

Description of Female. Habitus (Fig. 2) in dorsal view fusiform, dorso-ventrally compressed. Length measured from tip of rostrum to distal end of FR (without setae) 535–600 μm. Largest width at posterior edge of cephalothorax is 200 μm. Artificial variations may occur due to ventro-dorsal compression while embedding. Cephalothorax large, almost one third of entire body length. Cephalothoracic surface with sensilla in distinct pattern. Rostrum as in male (Fig. 9C) triangular in shape, with 2 sensilla. Surface of thoracic segments ornamented and covered with irregular rows of minute spinules. Posterodorsal margins of cephalothorax and thoracic pleurotergites strongly dentate, forming blunt or sharp cuticular processes. Second and third urosomite no fused. Penultimate abdominal segment with dentate posterodorsal margin, consisting of 4 large distinct, triangular-shaped extensions forming a pseudoperculum (Figs. 2A–B). Posterior margin of telson (Figs. 2A–B) ventrally and laterally with short spinules, and with 2 sensilla dorsally. Anal operculum absent. FR (Fig. 3A) cylindrical, slightly convex on the inner and outer margins, about 4 times longer than the broadest width, with 7 setae (I–VII). Proximal part of dorsal surface covered with irregular patterns of minute triangular shaped spinules. Seta I minute. Seta II dwarfed, inserting at ⅓ of lateral margin, not even reaching the end of FR. Seta III dislocated ventrally and subdistally. Setae IV and V well developed. Seta VI inserting terminally and medially from seta V. Seta VII inserting subdistally at dorsal side from small pedestal, dwarfed, biarticulate at base.

A1 (Fig. 4) 8-segmented. First segment with 1 seta and several spinules. Second segment with 17 bi- to tripinnate setae (2 broken), some with rat-tail endings. Third segment bearing 3 setae (2 broken), and sixth segment with 2 setae. Seventh segment with 2 setae; setation of eighth segment unknown (segment damaged). Armature formula: 1–1; 2–17; 3–3+aes; 4–1; 5–3; 6–2; 7–2; 8–unknown (damaged).

A2 as in male (Fig. 11A).

Md (Fig. 5A) with well-developed gnathobase, bearing 1 seta. Mandibular palp comprising basis, enp and exp. Basis with 3 apical setae. Both exp and enp 1-segmented, each with 1 lateral seta; exp additionally with 3, exp with 2 apical setae. Mxl (Fig. 5B) consisting of praecoxal arthrite, coxa, basis, exp, and enp. Praecoxa (# in Fig. 5B) with 2 surface setae (broken). Apically with 6 spines and 1 seta, 2 spines almost triangular in shape and armed with a number of spinules. Coxa (* in Fig. 5B) with 4 setae (1 seta broken), epipodite represented by 2 setae. Basis with 6 setae (all broken) and 3 slender spinules. Enp 1-segmented, with 6 setae (2 broken). Exp 1-segmented, with 3 strong and sturdy bipinnate setae (1 broken).

Mx (Fig. 6A) consisting of syncoxa, allobasis and 1-segmented enp. Syncoxa with 3 endites, inserting all at distal half. Proximal endite bicolate, with 3 setae on each lobe, one of them very slender. Middle endite with 2 apical setae, one being very slender. Distal endite terminally with 1 strong and 1 smaller seta. Basis bearing 2 claw-like spines and 1 seta. Additionally with 3 setae inserting close to enp. Enp very small, bearing 3 apical setae.

Mxp (Fig. 6B) comprising syncoxa, basis and 1-segmented endopod. Syncoxa unarmored, basis with 1 strong inner seta and row of finespinules. Enp with 2 very slender outer setae and 2 apical setae. P1 (Fig. 7A) basis with outer and inner biplumose seta. Inner seta nearly as long as enp. Exp 3-segmented, exp1 with outer spine (broken). Exp2 and exp3 each carrying 1 inner seta; exp2 with 1 outer spine; exp3 with 2 outer spines and 3 apical setae, the innermost of which being twice as long as the remaining ones. All exopodal outer spines with pinnae of increasing length at outer distal margin. Exp 2-segmented, exp1 with 1...
inner seta inserting at subdistal half. Enp2 with 1 inner, 2 apical and 1 outer seta, the innermost of which being short, slender, and flexible, and the outermost showing the same shape as the exopodal outer setae. Both rami armed by rows of spinules at the outer margin as figured.
P2–P4 (Figs. 7B,C, 8A,B) with 3-segmented rami. Coxa and basis with spinules as figured, basis also with outer seta (broken on P2). Intercoxal sclerites (Fig. 7B) bow-like. Variation in setation possible, as shown for on P2 Exp, which may bear (Fig. 7B) or lack (Fig. 7C, arrow) the proximalmost outer spine. Setation of swimming legs P1–P4 is given in Table 1.

Table 1. *Zosime anneae* sp. nov., setation of swimming legs (outer setae/spines in Roman numbers).

<table>
<thead>
<tr>
<th></th>
<th>Exopod</th>
<th>Endopod</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>I-0; I-1; III-2-1</td>
<td>0-1; I-2-1</td>
</tr>
<tr>
<td>P2</td>
<td>I-1; I-1; III-2-2</td>
<td>0-1; 0-1; I-2-1</td>
</tr>
<tr>
<td>P2 male</td>
<td>I-1; I-1; III-2-2</td>
<td>0-1; 0-1; 0-1+apophysis-0</td>
</tr>
<tr>
<td>P3</td>
<td>I-1; I-1; III-2-2</td>
<td>0-1; 0-1; I-2-1</td>
</tr>
<tr>
<td>P4</td>
<td>I-1; I-1; III-2-2</td>
<td>0-1; 0-1; I-2-1</td>
</tr>
</tbody>
</table>

Fig. 3. *Zosime anneae* sp. nov., female. A. left FR (paratype 2), dorsal view; B. genital field (paratype 4). Scales: 50 μm.
Fig. 4. Zosime anneae sp. nov., female A1 (holotype), showing the segmentation (segments 1–8) and their respective ornamentation. Scale: 50 μm.
Fig. 5. *Zosime anneae* sp. nov., female (holotype). A. md; B. mxl; #, praecoxa; *, coxa. Scale: 50 μm.
Fig. 6. *Zosime anneae* sp. nov., female. A. mx (holotype); B. mxp (paratype 5); C. P5 (paratype 3). Scales: 50 μm.
Fig. 7. *Zosime anneae* sp. nov., female. A. P1 (paratype 4); B. P2 (holotype); C. P2 exp3 (paratype 2), lacking proximal outer spine (arrowhead). Scales: 50 μm.
Fig. 8. Zosime anneae sp. nov., female (holotype). A. P3; B. P4. Scale: 50 μm.

Koller & George: A new Zosime from the Great Meteor Seamount
Fig. 9. *Zosime anneae* sp. nov. A. male habitus (paratype 7), dorsal view; B. male habitus (paratype 6), lateral view; C. male rostrum (allotype), ventral view; D. male P5 (paratype 9). Scales: A,B, 100 μm; C,D, 50 μm.
Fig. 10. \textit{Zosime anneae} sp. nov., male. \textbf{A.} A1 (allotype), showing the segmentation (segments 1–7) and their respective ornamentation; \textbf{B.} P6 (paratype 9). Scales: 50 μm.
Fig. 11. *Zosime anneae* sp. nov. **A.** male A2 (allotype); **B.** male P2 (paratype 8). Scales: 50 μm.
P5 (Fig. 6C) exp fused with benp. Endopodal lobe with 4 long bipinnate setae. Exp with 4 setae, one of which displaced to the base of the outer basal seta, the remaining ones inserting apically; the outermost apical seta rat-tailed and smaller than the others. Outer basal seta implanted on a long setophore.

GF (Fig. 3B) large and strongly sclerotized. P6 fused and forming single plate carrying 3 fine setae on each side.

Description of the male. The male resembles the female in most characteristics, except for the following features that are described below:

Habitus (Figs. 9A,B) more slender and with different sensillar pattern on cephalothoracic shield.

A1 (Fig. 10A) subchirocer, 7-segmented. Most, but not all setae with rat-tail endings. First segment with several spinules and 1 seta. Second segment also bearing 1 seta. Third segment with 7 setae (2 broken), fourth segment with 9 setae. Fifth segment with 1 large aes and 12 setae. Sixth segment with 2 slender setae, seventh segment with 1 small aes and 10 setae, with blunt apical process.

Armature formula: 1; 2-1; 3-7; 4-9; 5-12+aes; 6-2; 7-10+aes.

A2 (Fig. 11A) with basis and 3-segmented exp. Basis with 1 short abexopodal seta. Exp1 and 2 each with 1 lateral seta, exp3 with 1 lateral and 3 apical setae. Enp 2-segmented, enp1 with 1 seta (broken), enp2 with 2 lateral spines, apically with 1 spine and 5 setae. Additionally with spinules alongside and in a distally located half circle.

P2 (Fig. 11B) enp3 sexually dimorphic, bearing only 1 apical seta and apically a curved, smooth, hook-shaped apophysis.

P5 (Fig. 9D) remarkably smaller than in female; exp fused with benp, slightly longer than broad, apical setae smaller than in female (outer seta broken). Endopodal lobe weakly developed, with 2 small, smooth setae. Exp with 3 setae (1 broken). Outer basal seta (broken) arising from long setophore, accompanied by 1 seta inserted on a small elevation.

P6 (Fig. 10B) protruded and armed with 3 spinules, bearing 2 long bipinnate setae and 1 inner, dwarfed, fine seta.

Remarks on the distribution of the genus Zosime on the Great Meteor Seamount. Of all 6126 harpacticoid copepods collected at the GMS (George & Schminke 2002), 475 (7.75 %) belong to Zosimeidae (formerly assigned to Tisbidae Stebbing, 1910). At the GMS, the taxon is represented by 12 species, all belonging to the single genus Zosime. Only one species, namely Zosime bergensis Drzycimski, 1968 is also known from other locations (west coast of Norway [Drzycimski 1968], Porcupine Seabight [Cheerardyn et al. 2009]), all remaining 11 species are new to science.

Of the 19 analysed stations, 14 contain Zosimeidae (Fig. 1). Z. anneae sp. nov. is by numbers the most frequent zosimeid of the GMS, being present at 12 stations and distributed over the three topographical regions at the GMS (cf. Ulrich 1971): plateau (7 of 8 plateau stations), slope (3 of 4 slope stations), and the rise (all stations; Fig. 1). The new species shows a plateau-wide dispersal but is missing at station 455 (297 m). All stations combined, 161 adult specimens were found, including 93 females (58 %) and 68 males (42 %). The other 314 zosimeids sampled at GMS show a comparable sex ratio with 188 females (60 %) and 126 males (40 %). The bulk of these 314 zosimeids is represented by four species (including the known species Z. bergensis), which make up for 94 % of the 314 individuals (295 individuals). These four species show a similar distribution as Z. anneae sp. nov and were also found in all topographical regions of GMS (excluding one species, which was absent on the slope). The remaining 6 % (19 individuals) are represented by seven species, all unknown. Five species are present as singletons, and two species are represented by seven individuals each, with one species also occurring in all regions and the other only missing at the rise. Summarizing, six of twelve zosimeid species (representing 463 individuals or 97.5 %) were present on the plateau (292–325 m) and at the rise (4015 m). Within the different regions, no distinct distributional pattern can be recognized.

Due to sampling difficulties (Pfannkuche et al. 2000), there are no samples from the western and south-western slopes of GMS (Fig. 1). However, samples from the north-eastern (Stt. 519), eastern (St. 551) and south-eastern (St. 564) side of the slope yielded specimens of Z. anneae sp. nov. Below 3000 m, 4 stations were sampled during M42/3 (Pfannkuche et al. 2000). Two stations are located in the Northeast (Sts. 505, 506), and two in the Southwest (Sts. 484, 566), respectively (Fig. 1). Only the south-western stations provided Zosimeidae, including Z. anneae sp. nov.
Phylogenetic remarks. The taxon Zosimeidae Seifried, 2003 (erected by Seifried [2003] as “Zosimidae”, cf. above “Material & Methods”), encloses three genera: the type genus Zosime, including 14 so far described species (Tab. 2), and the genera Peresime (2 species) and Pseudozosime (monotypic). That author provided the following 19 autapomorphies for Zosimeidae, compared with its adelphotaxon Idyanthidae Lang, 1944, which clearly support the monophyly of Zosimeidae [plesiomorphies in square brackets]:

1. Loss of subterminal seta 4 at A2 enp2 [subterminal seta 4 present];
2. Distal border of A2 enp2 not bevelled [border clearly bevelled];
3. Basal setae of md inserting on a bulge of inner border [no bulge developed];
4. Md enp with 1 lateral seta [with at least 2 setae];
5. Md enp with 3 apical setae [with 7 setae];
6. Md exp 1-segmented, with 3 lateral and 1 apical seta [2-segmented, with 4 lateral, and 2 apical setae];
7. Mxl: 2 terminal spines (VII + VIII) lacking [both spines present];

Table 2. List of known Zosime species including sampling localities and authors.

<table>
<thead>
<tr>
<th>Species</th>
<th>Sampling locality / ies</th>
<th>Depth(s) [m]</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zosime annaeae sp. nov.</td>
<td>Great Meteor Seamount (Atlantic Ocean)</td>
<td>292-4015</td>
<td>Present contribution</td>
</tr>
<tr>
<td>Z. bathyalis Por, 1967</td>
<td>Gulf of Eul (Israel, Red Sea)</td>
<td>180-700</td>
<td>Por 1967</td>
</tr>
<tr>
<td>Z. erythraea Por, 1967</td>
<td>Gulf of Eul (Israel, Red Sea)</td>
<td>180-190</td>
<td>Por 1967</td>
</tr>
<tr>
<td>Z. gisleni Lang, 1948</td>
<td>Gullmarfjord (Sweden, Atlantic Ocean); Gulf of Eul (Israel, Red Sea); Kattegat (Germany, Baltic Sea)</td>
<td>20-300</td>
<td>Lang 1948, Por 1967, Arlt 1983</td>
</tr>
<tr>
<td>Z. major Sars, 1919</td>
<td>Korshaven, Risør (Norway, Atlantic Ocean), Gullmarfjord (Sweden, Atlantic Ocean)</td>
<td>20-92</td>
<td>Sars 1921, Lang 1948</td>
</tr>
<tr>
<td>Z. mediterranea Lang, 1948</td>
<td>Castiglione (Algeria, Mediterranean Sea)</td>
<td>50-565</td>
<td>Littoral Lang 1948</td>
</tr>
<tr>
<td>Z. paratypica Becker & Schriever, 1979</td>
<td>Iberian deep sea (Atlantic Ocean)</td>
<td>3694</td>
<td>Becker & Schriever 1979</td>
</tr>
<tr>
<td>Z. reynisi Dinet, 1974</td>
<td>Cape Basin (Southeast Atlantic Ocean)</td>
<td>3920</td>
<td>Dinet 1974</td>
</tr>
<tr>
<td>Z. typica Boeck, 1872</td>
<td>Oslo Fjord, Farsund, Risør (Norway, Atlantic Ocean), Gullmarfjord (Sweden, Atlantic Ocean)</td>
<td>20-100</td>
<td>Boeck 1872, Sars 1910, Lang 1948</td>
</tr>
<tr>
<td>Z. valida Sars, 1919 (described by Brady [1880] as Z. typica, but transferred subsequently into Z. valida by Sars [1919])</td>
<td>North Sea / Atlantic Ocean (UK, Norway, Sweden); Baltic Sea (Germany, Sweden); Eastern Mediterranean Sea (Israel), White Sea (Russia)</td>
<td>20-100</td>
<td>Brady 1880, Sars 1919, Lang 1948 for more distribution data, Por 1964, Kornev & Chertoprud 2008</td>
</tr>
</tbody>
</table>
As *Zosime anneae* sp. nov. shows all 19 apomorphies, its assignment to Zosimeidae is doubtless. From a diagnostic point of view, the allocation of a new zosimeid species into one of the three genera seems unproblematic. It depends on the number of P2–P4 endopodal segments that is different in the three genera (Tab. 3). In that context, the tentative allocation of *Z. anneae* sp. nov. to *Zosime* is diagnostically justified. However, no autapomorphy could be detected yet for that genus. Some observed derived features nonetheless await manifestation for all *Zosime* species. For instance, the P5 exp in almost all *Zosime* species presents the outermost exopodal seta arising from a (more or less strong evolved) protrusion that becomes displaced towards the exopodal surface but is absent in the remaining zosimeid genera. However, *Z. reyssi* lacks that derived condition (Dinet 1974). The same applies to the length of the furcal rami. *Peresime* and *Pseudozosime* show furcal rami of almost square size, the FR of *Zosime* species are at least twice as long as broad. Nevertheless, this is not true neither for *Z. incrassata* Sars, 1910 nor for *Z. reyssi*, both sharing the almost square FR with above mentioned *Peresime* and *Pseudozosime*. Thus, all so far recognized possible autapomorphies of *Zosime* show incongruent conditions. Comparison of *Z. anneae* sp. nov. with remaining *Zosime* species provides more phylogenetic confusion. The new species presents an 8-segmented female A1 that presumably is the most primitive condition of all known Zosimeidae and supposed to be the zosimeid groundpattern (Seifried 2003), as all remaining representatives of the family show a 6–7-segmented A1. Thus, the new species may represent a relatively primitive taxon inside *Zosime* and even inside Zosimeidae. This is, however, contradicted if looking at the P5: *Z. anneae* sp. nov. shows a fusion of benp and exp in both sexes, being here regarded as derived and shared with all other representatives of the genus except *Z. incrassata* and *Z. incrassata bathybia* Bodin, 1968, which retain the plesiomorphic distinction between benp and exp.

An outstanding extensive phylogenetic analysis may clear up the phylogenetic status of *Zosime*. Such analysis certainly requires comparison not with the descriptions provided in the literature but with the type material of most species; it cannot be achieved in the present contribution. Nevertheless, *Z. anneae* sp. nov. may perhaps yield some unique characters at the FR as true apomorphies for the species, although they cannot be proven for all *Zosime* species due to inadequate descriptions [plesiomorphies in square brackets]:

1. Furcal setae I and II set widely apart from each other, due to FR elongation [setae I and II standing much closer together]
2. Furcal seta I minute, reaching the size of a fine setule [seta I as long as or slightly smaller than seta II]
3. Furcal seta I displaced ventrally, inserting at the middle of the FR [seta inserting laterally/lateroventrally at distal half of FR]
4. Furcal seta II dwarfed, not even reaching the end of FR [seta II at least reaching end of FR]
5. Furcal seta VII dwarfed, very slender [seta VII much longer]

In particular the FR seems to be object of some phylogenetic derivation. Furcal elongation [20] is generally considered rather a derived than a primitive feature, as observable generally in Cope-
poda (Huys & Boxshall 1991) and Harpacticoida (Lang 1948). The furcal setae I and II are commonly located closely together, being I slightly smaller than and located ventral to II (Huys & Boxshall 1991). Thus, the remarkable size reduction and displacement of seta I compared to II [21; 22] displays a derived, i.e. apomorphic condition inside Zosime. The same applies to setae II and VII in comparison with the remaining species of that genus [23; 24].

Geographic and bathymetric distribution of Zosime. The taxon Zosime shows a wide geographical distribution, with most reports from the boreal and northern cold-temperate Atlantic (Table 2). Findings from the Baltic Sea (Lang 1948, Arlt 1983), the Mediterranean (Lang 1948), the Magellan Region (George & Schminke 1999), the South China Sea (Chertoprud et al. 2009), the South-eastern Atlantic (Dinet 1974), and the Pacific (Fiers 1991) point to a distribution range that may even be cosmopolitan; the present report of Z. anneae sp. nov. from the subtropical Atlantic as well as recent findings of seven new species from the Angola basin (Seifried pers. comm.) and nine new species from the Pacific Clarion-Clipperton Fracture Zone (Mahatma pers. comm.) support such an assumption and demonstrate that the low number of known Zosime species is rather due to lack of sampling than reflecting the rarity of this taxon. An indication for wide distribution ranges even at the species level is observable for e.g. Z. gisleni, which has been found in the North Sea, the Baltic, and the Mediterranean (Table 2); for Z. incrassata, reported from both Eastern and Western North Atlantic and the Adriatic Sea, and for Z. valida from the North-eastern Atlantic, the Baltic Sea, and the Mediterranean (Table 2).

The distribution of Z. anneae sp. nov. at the Great Meteor Seamount extends from the plateau along the slope down to the rise. As the depth range between plateau and rise is about 4000 m, Z. anneae sp. nov. is considered to be eurybathic. As there are differences in sediment structure, sediment composition, pore size, oxygen concentration, salinity, and temperature between the plateau and the rise (see Pfannkuche et al. 2000), the present species may also be eurytopic, being able to adapt to quite different environmental conditions.

Acknowledgments

The authors are indebted to two anonymous reviewers for constructive and helpful comments on the manuscript. Prof. Dr. M. Türkay (Frankfurt, Germany) made valuable comments and indications on nomenclatoric aspects.

References

Boeck, A. 1872. Nye Sælger og Arter af Saltvands-Copepoder. Forhandlinger i Videnskabs-selskabet i Kristiana (Oslo) 14: 35–60
Fiers, F. 1991. Three new harpacticoid copepods from the Santa Maria Basin off the Californian Pacific
Coast (Copepoda, Harpacticoida). Beaufortia 42 (2): 13–47.

