MONOCULUS
Copepod Newsletter

Number 28
November 1994

Edited by: Hans-U. Dahms and H. Kurt Schminke, Fachbereich 7 (Biologie), Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany. Gerd Schrieser, Forschungsinstitut Hohenwestedt, Kieler Str. 51, D-24594 Hohenwestedt, Germany.

Produced by: Bibliotheks- und Informationssystem (BIS) der Universität Oldenburg, Ammerländer Heerstr. 67/99, D-26111 Oldenburg, Germany.

Distributed in North America by: National Museum of Canada (Chang-tai Shih, National Museum of Natural Sciences, Zoology Division, P.O. Box 3434, Station D, Ottawa, Ontario, Canada D1A 6P4). Distributed in India by: M. Madhupratap, National Institute of Oceanography, Dona Paula, Goa 403004, India.

This issue has been typed by: Angelika Sievers, Fachbereich 7 (Biologie), Universität Oldenburg.

Deadline for the next issue of MONOCULUS: 1st April 1995.

ERRATUM
As has been discovered by Z. Kabata, there was a wrong author adjoint in MONOCULUS 27 to the following paper:
EDITORIAL

Are copepods important?
Copepod research is, of course, a justifiable scientific enterprise by itself. But when it comes to fund-raising one will be asked about the significance of copepod taxa in an ecological context, their economic importance, or their use for other scientific disciplines.

It is likely that copepods are the most numerous metazoan animals. They are inhabiting different aquatic realms and are performing a variety of life styles. Being that ubiquitous they are affecting mankind either directly (e.g. as human parasite vectors) or more indirectly by their economic importance. The latter is not restricted to their nutritional role as many are the early diet for many organisms which will become human sea-food items. Copepods are substantial primary and secondary consumers in aquatic food chains. And they can be used as biological agents (e.g. in mosquito control as pointed out by C.H. Fernando, MONOCULUS 27) and for environmental monitoring purposes, both in the field and in the laboratory. There may be also negative effects of copepods from an economical point of view: parasitic copepods afflicting fisheries and aquaculture. Copepod grazing will use up algal primary production in the transfer to a higher trophic level, which is not yet exploited directly by humans. On the other hand, copepods make organic material available to higher trophic levels in a larger pelletable size, saving foraging energy for their predators.

Most important, it seems that copepods can be used as ideal model organisms for any general biological approach. Their very ubiquity makes them readily available. High density and diversity reduces sampling size and processing and storage effort for in situ studies. Concepts of e.g. community ecology could be tested using copepod communities as model systems. Owing to their small body size, comparatively short generation times, and high growth rates, space and time requirements for experiments with them are modest.

The small size of copepods makes it possible to use experimental populations of millions of individuals, which excludes any unwanted influence of inter-individual variability. Many copepods can easily be maintained and even be reared over multiple generations. Cultures may provide evidence on e.g. life history traits, embryonic morphology, growth, colour-pattern, physiology, life habits, behaviour, autecology, and the ontogenetic changes of these parameters.

Candidate members of WAC are reminded of sending a short article about e.g. themselves, their research interests and running projects to the editor of MONOCULUS.

This issue of MONOCULUS came about due to the efforts of several colleagues. The editorial staff thanks the following members for their contributions:
Sixth International Conference on Copepoda
Oldenburg 1996

Mr. McSilliped and Miss O'Frioid invite you to the SIXTH INTERNATIONAL CONFERENCE ON COPEPODA in Oldenburg 1996.

The Sixth International Conference on Copepoda will be held in Oldenburg (Germany) in the week from 29th July to 2nd August 1996.

It will be organized by Arbeitsgruppe Zoomorphologie, Universität Oldenburg, and Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven under the auspices of the World Association of Copepodologists (WAC).

If you are interested in attending and wish to receive the second circular and registration forms, please fill in the form on the attached sheet and return it to:

Sixth International Conference on Copepoda
Dr. Horst Kurt Schminke
Universität Oldenburg
D-26111 Oldenburg, Germany
Fax: +49-441-798-3250
Telephone: +49-441-798-3374
e-mail: SCHMINKE@HRZ1.PCNET.UNI-OLDENBURG.DE
The official language will be English. All posters, presentations and submitted papers must be in English. Oral presentations will be limited to 15 minutes including questions. Poster sessions will be given special emphasis.

The following special symposia are being considered for special sessions:
- Copepods as parasites of fishes (convenor: J.-s. Ho)
- Role of copepods in freshwater ecosystems (convenor: G. Fryer)
- Reproductive biology of copepods (convenor: F. Ferrari)
- Life cycles of copepods (convenor: S.-i. Uye)

Forms for registration, reserving accommodations, and participation in post-conference workshops, as well as details of transportation will be included in the second circular.

OLDENBURG - where the "Sixth International Conference on Copepoda" will take place in 1996

Oldenburg is situated in the middle of the countryside, on the "Green Coastal Road" running up to the North Sea coast.

Many ways lead to the young university city. With its 150,000 inhabitants it is both the cultural centre and the capital of the governmental district of the Weser-Ems region.

Being linked to the "Intercity" and "Interregio" railway network of the federal railway system, Oldenburg can be reached by train several times a day. The city centre is situated only a few minutes from the railway station. Those who come to Oldenburg by car can reach the city most quickly via the motorways A28 and A29. The motorway ringroad around the city leads you directly to the town centre and to special places marked "Park + Ride", from which busses will take you to the centre every ten minutes on workdays. Of course, you can also go to Oldenburg by airplaine: Bremen airport is accessible by car in no more than 30 minutes. (The nearby airport of Hatten is available for private aircrafts.)

Oldenburg is a city of many faces, each of which has a typical attraction for visitors from near and far. Have a look around and see for yourself.

Red and yellow are the colours on the city's coat of arms, but perhaps green should also be there. Parks and gardens are dotted about the city inviting visitors and townspeople alike to enjoy the many leisure and sporting activities available, whether on Shank's pony or in the saddle of a bicycle or horse, balanced on a surfboard, on the tennis court or in the cockpit of a small aircraft. Oldenburg has the widest range of facilities either within the city itself or nearby.

Nature lovers in particular can enjoy the beauties of three typical coastal regions: sandy geest, lush marshland and sombre moorlands offer wide-ranging views and turn excursions in the tangy sea air into an experience to remember. And even when the weather does not look too promising, there is still Oldenburg itself to discover.
The charm of this old residence of the counts and dukes of Oldenburg is just as strong today as it ever was. History comes alive as you walk through the old streets and alleys of the centre with its five hundred-year-old tradition.

In the beginning there was a river, strictly speaking a ford. In the eighth century an old trade route from Bremen to Jever led
across the River Hunte marking the approximate location of the city today. The ford promised revenues, especially tolls and contributions for convey protection. Enough reason for some nobles - the future Earls of Oldenburg - to settle down at this place. In 1108 "Aldenburg" was first documentarily mentioned and gave the name to the arising village nearby.

The village developed to the county's centre of commerce and administration and gained the freedom of the city on the 6th of January in 1345 - therefore the 650th anniversary of the city of Oldenburg will be celebrated in 1995.

The city centre has now, of course, been completely modernised. Experts consider the pedestrian precinct to be one of the most attractive of the whole of Germany and the town planners have also managed to combine the old and the new in delightful harmony. After all, "buildings for people" has long been a motto of Oldenburg's city fathers. Oldenburg city centre is designed for shoppers, but that's not all. Park fountains, lawns and quiet corners make it an enclave for people looking for relaxation or for those who appreciate the advantage of having museums and other nationally reputed culture institutions, such as the Castle and the State Theatre close to the centre of the city. And not only indoors, but also in the open and free of charge - another typical feature of Oldenburg. Visitors can also follow the Oldenburg motto "Go by bike" and discover its beauties on 250 km of cycle paths.

From spring right through the winter there is always something going on outside - yet another reason for the city being a focal point for half a million people in the surrounding region. There are hundreds of bistros and pubs, elegant restaurants and fashionable cafés to cater for all tastes, from a glass of draught beer at the corner to restaurants with an exquisite international cuisine.

(For further information please contact the local tourist information office, Wallstrasse 14, 26122 Oldenburg, phone (Germany) 441/235-2235.)
WAC - TREASURER'S REPORT 1991/1992

1. The financial situation

<table>
<thead>
<tr>
<th></th>
<th>01.01.-31.12.1992</th>
<th>01.01.-31.12.1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance forward</td>
<td>17.101,91 DM</td>
<td>15.918,21 DM</td>
</tr>
<tr>
<td>Deposits</td>
<td>1.317,00 DM</td>
<td>10.524,89 DM</td>
</tr>
<tr>
<td>Interests</td>
<td>1.265,50 DM</td>
<td>340,52 DM</td>
</tr>
<tr>
<td>Total</td>
<td>2.582,50 DM</td>
<td>10.865,41 DM</td>
</tr>
<tr>
<td>Expenses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer to Conference</td>
<td>2.977,00 DM</td>
<td>5.083,20 DM</td>
</tr>
<tr>
<td>Support of MONOCULUS 91/92</td>
<td>668,20 DM</td>
<td>1.668,40 DM</td>
</tr>
<tr>
<td>Account dues</td>
<td>121,00 DM</td>
<td>143,13 DM</td>
</tr>
<tr>
<td>Total</td>
<td>3.766,20 DM</td>
<td>6.894,73 DM</td>
</tr>
<tr>
<td>Balance</td>
<td>15.918,21 DM</td>
<td>19.888,89 DM</td>
</tr>
</tbody>
</table>

Remarks: The total financial situation of WAC looks always better than it actually is. Several members have used the Baltimore Conference to pay their dues in advance. You can see this from the development of the deposits since 1990. This was as follows: 1990: 6.048,33 DM (year of Conference); 1991: 2.796,28 DM and 265,99 US $; 1992: 1.265,50 DM and 958,52 US $ and 1993: 10.524,89 DM (including the transfer from the American $ account to the German account). Many thanks again to all who have made generous donations to the WAC. All this helps the Association to support those members whose dues have been waived and to give grants to some colleagues to attend the next conference in Oldenburg/Germany. In the next MONOCULUS Thomas Glatzel and Ruth Boettger-Schnack will give a report on how Gerd is doing his job as treasurer.

!!!!!!!!!!!!!!!!!!!! THIS IS YOUR LAST MONOCULUS !!!!!!!!!!!!!!!!!!!!!!!

The following WAC-members and candidate members have not paid their dues since 1990 and will be ELIMINATED from the MONOCULUS mailing list - this is your last MONOCULUS - if you do not send your dues to Gerd:

HELP-HELP-HELP
Someone has sent a cheque for 17 DM dues to Kurt Schminke. Unfortunately, Kurt has endorsed the cheque without putting down the name. Please write to Gerd.

Gerd Schriever, Hohenwestedt, Germany
EMILIA STELLA
1909-1994
On March 10, 1994, Prof. Emilia Stella of the University "La Sapienza di Roma" passed away at the age of 84.
She was born on April 4, 1909, and worked on the plankton of lakes and temporary waters, particularly on calanoids.
Her department made the following announcement:
Il Dipartimento di Biologia Animale e dell'Uomo dell'Università "La Sapienza" di Roma,
annuncia con profondo cordoglio la scomparsa,
avvenuta in Roma il 10 marzo 1994, della
Prof. EMILIA STELLA
ricordandone l'opera appassionata in favore della
ricerca idrobiologica, l'impegno didattico e la
signorilità dell'animo.

Second European Crustacean Conference
A Second European Crustacean Conference is planned to be held in Belgium in 1995 (or 1996). Those interested can contact Dr. André Péqueux, Laboratoire de Physiologie Animale, Institut Van Beneden, Université de Liège, Quai Van Beneden 22, B-4020 Liège, Belgium.

Il Congreso de Ecologia do Brasil
(December 5-9, 1994)
Universidade Estadual de Londrina
Centro de Ciências Biológicas
Departamento de Biologia Animal e Vegetal
Campus Universitário. Caixa Postal 6001
CEP 86051-970 Londrina - Paraná BRASIL
Tel: (043) 3212000 (ext. 4247)

New Journal
The Brazilian Society for Carcinology is launching a new journal "Nauplius" dealing with all aspects of crustacean systematics and biology. Anyone requiring further information on the journal may contact the editor, Dr. Monica Montu, Plankton Laboratory, Dept. of Oceanography, Foundation University of Rio Grande, Caixa Postal 474, 96201-900 Rio Grande RS, Brazil.

Carbon Fluxes and Dynamic Processes in the Southern Ocean: Present and Past
Institut Universitaire Européen de la Mer
Université de Bretagne Occidentale
Brest (France)
28-31 August 1995
an International Symposium organized in association with Southern Ocean JGOFS
Back issues of MONOCULUS

I am trying to clean my book shelves and I am about to throw away back issues of MONOCULUS. The number of each issue of the MONOCULUS (Nrs. 4-26) varies from a few to over fifty. Would you announce in the next issue of MONOCULUS that these back issues will be given away free as long as they are still available.

Chang-tai Shih
Natn. Mus. Nat. Sci
Zool Division, Stn. D,
P.O.Box 3434
Ottawa, Ontario
Canada U1A 6P4

Annual lists of new copepod taxa (1985-1994)

Since 1985, I have been compiling annual lists of new copepod taxa. The lists consist of the name, type depository, type locality, and reference of each new taxon. A computer printout of the list from 1985-1990 will be available on request. The list is too long to be included in MONOCULUS (25 to 44 pages per list).

The list comprises two paragraphs: a. new taxa; b. publications. In the New Taxa, each new species includes information on the types and locality of the holotype. In the Publications, the new taxa in each publication is listed after the full citation of the publication.

Based on my experience in compiling these lists, I would like to recommend to fellow copepodologists who publish new taxa that the following information should be included in their manuscripts:

1. Designation of types.
2. Depository of types. The types, at least the holotype and allotype should be deposited in an institution which will take proper care of the specimens on a permanent basis.
3. Information on type locality and other collecting data.

Chang-tai Shih, Ottawa, Canada
SAMPLE:
Annual lists of new copepod taxa (1985-1994)
I. New Taxa of the Copepoda: 1985

CALANOIDA

ACARITIIDAE
Acartia (Acanthacartia) bacorehuisensis Zamora-Sánchez et Gomez-Aguirre

Holotype: f. Paratypes: 16 m, 17 f. All in the collection of la Universidad Autónoma Metropolitana. (In the publication, the description of female is under the heading of Holotypo hembra. However, at the end of the description it stated: "Holotipo m y Paratipos 17 f y 16 m,...")

Type locality: Gulf of California: Mexico: Laguna de Agiabampo Sonora: Estero de Bacorehuis, 26°20'N 109°05'W.

Acartiella nicolae Dussart

Holotype: m. Allotype: f. Paratypes: 5 m, 5 f. All in the author's collection which will be deposited in Museum d'Histoire naturelle de Paris.

Type locality: Pacific: Borneo: estuary of Mahakam: 117°20'E, 0°30'S.

II. Publications of Copepoda New Taxa: 1985

Archimisopha squamosa sp.nov.

Pilarella longicornis gen. et sp.nov.

Alvarez, M.P.J. Revision of the genus Neoscolecithrix (Copepoda, Calanoida) and description of N. caetanoi, sp.n., collected off Brazil. Revista Brasileria de Zoologia 3: 197-207.

Neoscolecithrix caetanoi sp.nov.

Platycopia robusta sp.nov.

Elaphoidella bisetosa sp.nov.

Elaphoidellopsis gen.nov.

Stygoelaphoidella gen.nov.

Neoeolaphoidella gen.nov.

Bayly, I.A.E. A new species of Boeckella (Copepoda: Calanoida) from western Australia, and comments on two other congers. Records of West Australian Museum 12: 79-84.

Boeckella shieli sp.nov.
We appreciate this compilation of "Annual lists of new copepod taxa" very much and it will undoubtedly be of help for many Copepodologists.

Therefore, we are asking interested people to send a request to the editor of MONOCULUS. According to this response the "Annual lists of new copepod taxa" will be printed and distributed.
We appreciate this compilation of "Annual lists of new copepod taxa" very much and it will undoubtedly be of help for many Copepodologists.

Therefore, we are asking interested people to send a request to the editor of MONOCULUS. According to this response the "Annual lists of new copepod taxa" will be printed and distributed.
Family CYCLOPIDAE
Metacyclops oraemaris (Figs. 1-4)

Holotype. MZUSP 11449.
Type locality. Itamambuca (23°24' S, 44°59' W), Ubatuba, State of São Paulo, Brazil.
Paratypes. MZUSP 11450, 39 specimens from Itamambuca, in moss growing on crystalline rock moistened by freshwater trickling down on highway BR 101 (1 June 1991; coll. C.E.F. da Rocha).
Other material. MZUSP 11451-11452, 2 specimens in moss about 1 m above groundlevel at entrance of Gruta que Chora (23°30'S, 45°8' W), Ubatuba, a small grotto which may sometimes be reached by the sea during high tide (28 February 1991; coll. C.E.F. da Rocha); 2 specimens from moss growing along road to Forte Defensor Perpétuo, Parati (23°15'S, 44°42' W), State of Rio de Janeiro (31 May 1991; coll. C.E.F. da Rocha).

Etyymology. The specific name (from the Latin 'oraem', edge; 'maris', from the sea) refers to the find of the species very near the sea's edge at Gruta que Chora.

Female. Length of holotype, excluding caudal setae 460 μm. Length of 8 paratypes ranging from 440 to 500 μm. Prosome: urosome ratio about 1.8:1. Body surface without patterns of cuticle striae. Posterior borders of all prosomites and first urosomite smooth (Fig. 1A). Genital double somite (Fig. 1B) about 1.25 times broader than long, broadest at anterior third and tapering posteriorly except for pronounced straightening at posterior third. Distal border of genital double somite and of two subsequent urosomites with hyaline membrane irregularly serrated (Fig. 1B,C). Seminal receptacle as shown in Fig. 1B. Anal pseudoperculum (Fig. 1C) with rounded hump on each corner; pseudoperculum of one female from Parati with row of tiny hyaline spinules along distal border.
Caudal rami (Fig. 1C,D) 2.3-2.5 times longer than wide, with lateral row of 3-4 spinules at anterior third. Lateral seta inserted at beginning of posterior third and preceded by a row of 5 spinules. Outermost apical seta 1.4-1.5 times length of innermost apical seta. Dorsal seta as long as or slightly longer than outermost apical seta. Inner middle apical seta longer than urosome and twice longer than outer one; both middle apical setae ornamented by setules sparsely placed on anterior third which become closer together and gradually longer and thinner towards tip. Pore signature pattern of urosome as shown by Fig. 1B-D.
Antennule (Fig. 2A) 11-segmented and armed as follows: 8 + row of spinules ventrally, 4, 6, 2, 1 + spine, 2, 3, 2 + aesthetasc, 2, 2 + aesthetasc. Apical aesthetasc fused at base with adjacent seta.
Antenna (Fig. 2B) with coxa unarmed. Seta representing exopod absent. Basis with 2 setae around inner distal angle, and with row of 5 or 6 spinules on posterior surface. Endopod segment 1 with inner seta. Endopod segment 2 with 8 setae, of which 7 on posterior surface and only 1 on anterior surface of inner side; seta on inner distal angle thicker than other setae. Endopod segment 3 with 7 apical setae.
Fig. 1. *Metacyclops oraemaris* sp.n., female. - A. Habitus, dorsal. - B. Urosome showing seminal receptacle, ventral. - C. Urosome, dorsal. - D. Urosome, lateral. Scale bars: 50 μm.
Fig. 2. *Metacyclops oraemaris* sp.n., female. - A. Antennule, ventral. - B. Antenna, posterior. - C. Labrum. - D. Mandible. - E. Maxillule. - F. Maxilla, posterior. Scale bars: 50 μm.
Labrum (Fig. 2C) with strong teeth on posterior margin and 2 groups of setules separated from each other by row of tiny denticles.

Mandible (Fig. 2D) with reduced palp bearing 2 long plumose setae and short naked seta.

Maxillule (Fig. 2E) comprised by well-developed praecoxa and 2-segmented palp. Praecoxal arthrite armature consisting of 9 spines and setae. Proximal segment of palp derived from basis, armed with 3 inner setae and outer remnant seta of exopod. Distal segment of palp representing endopod, armed with 3 setae.

Maxilla (Fig. 2F) 5-segmented, comprised of praecoxa, coxa, basis and 2-segmented endopod. Praecoxa fused to coxa on posterior surface. Basis drawn out into claw with 4 inner teeth. Seta formula: 2,3,2,2,3.

Maxilliped (Fig. 3A) of 4 segments, comprising syncoxa, basis and 2-segmented endopod. Seta formula 3,2,1,3.

Legs 1-4 (Fig. 3B-D) armed as follows (Roman numerals indicating spines, Arabic numerals representing setae):

<table>
<thead>
<tr>
<th>Leg</th>
<th>Coxa</th>
<th>Basis</th>
<th>Exopod</th>
<th>Endopod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-1</td>
<td>1-1</td>
<td>I-1, III,2,3</td>
<td>0-1, 1, I+1,3</td>
</tr>
<tr>
<td>2</td>
<td>0-1</td>
<td>1-0</td>
<td>I-1, III, I+1,4</td>
<td>0-1, 1, I+1,4</td>
</tr>
<tr>
<td>3</td>
<td>0-1</td>
<td>1-0</td>
<td>I-1, III, I+1,4</td>
<td>0-1, 1, I+1,4</td>
</tr>
<tr>
<td>4</td>
<td>0-1</td>
<td>1-0</td>
<td>I-0, II, I+1,4</td>
<td>0-1, 1, II,3</td>
</tr>
</tbody>
</table>

Basis of leg 1 with spinulose inner spine almost reaching insertion of proximal inner seta of endopod segment 2.

Legs 2 and 3 differing in size only.

Leg 4 coxa with row of spinules on distal border and curved row of spinules proximally on outer corner of caudal surface; second endopodal segment 1.6-1.8 times longer than broad, with inner apical spine slightly shorter than segment (0.9:1) and 1.7 times longer than outer apical spine.

Intercoxal sclerites of legs 1-4 smooth on both surfaces and with pair of humps at posterior corners.

Free segment of leg 5 (Fig. 1B) as long as wide. Spine serrate and longer than segment. Seta plumose and 3 times longer than spine. Dorsal remnant seta of basal segment (Fig. 1D) stout, plumose, and turned dorsally and posteriorly. Area of somite between free segment of leg 5 and dorsal seta (Fig. 1D) with thickening of cuticle.

Male. Body length ranging from 375 to 430 μm (N = 10). Pore signature pattern of urosome (Fig. 4A-C) differing from that of female by absence of group of 4 pores posterior to leg 6.

Antennule of 16 segments and armed as in Fig. 4D,E. Armature of segments 14 and 15 not seen clearly.

Free segment of leg 5 (Fig. 4B) with seta 2.5 times longer than spine.

Leg 6 (Fig. 4C) with spine as long as middle seta and about half length of outer seta.

Male similar to female in all other respects.
Fig. 3. *Metacyclops oraemaris* sp.n., female. - A. Maxilliped, posterior. - B. Leg 1, posterior. - C. Leg 2, anterior. - D. Leg 4, posterior. Scale bars: 50 μm.
Fig. 4. *Metacyclops oraemaris* sp.n., male. - A. Urosome, ventral. - B. Urosome, dorsal. - C. Urosome, lateral. - D. Antennule. - E. Last two segments of antennule. Scale bars: 50 μm.
Remarks. The new species closely resembles *M. paludicola* described by Herbst (1959). They share the same structure of the genital double somite, leg 4 endopod 2, and intercoxal sclerite of the leg 4; the same proportions of the caudal rami; and a similar number of segments of the antennule. Also, both species inhabit the moss in the coastal area of the State of São Paulo. The type locality of the new species is about 250 km north of the type locality of *M. paludicola*. However, differences between them are great enough to warrant them in different species.

The afore-described specimens were initially thought to represent *M. campestris* Reid, 1987 because of the absence of the outer seta on the basis of the antenna, the number of spinules on the anterior third of the outer surface of the caudal ramus, and also the general structure of legs 4 and 5. In order to clear doubts about the identity of these two species, part of the type material of *M. campestris* was re-examined.

C.E.F. da Rocha
São Paulo, Brazil
LITERATURE
(Sources marked by an asterisk * are donated to the MONOCULUS library)

1992

1993

*ASENCO, G., E. CLASING, C. HERRERA, R. STEAD & J. NAVARRO - 1993: Copépodos Harpácicoideos de las comunidades de Venus antiqua y Mulinia sp. en la planicie marea de Yaldad, Quellón, Chiloé, Chile. Revista Chilena de Historia Natural 66: 455-465

*DUMONT, H.J. & Y. RANGA REDDY - 1993: A reappraisal of the genus Phylloidiaptomus Kiefer, 1936, with the description of P. wellekensae n.sp. from India, and a redescription of P. turgidus Shen & Tai, 1964 from China (Copepoda, Calanoida). Hydrobiologia 263: 65-93

*GRYGIER, M.J. - 1993: Identity of *Thaumatoeossa (=Thaumaleus) typica* Krøyer, the first described monstralloid copepod. Sarsia 78: 235-242

*HUMES, A.G. - 1993: Poecilostomatoid copepods associated with the scleractinian coral *Acropora* in the tropical western Pacific Ocean. Invertebr. Taxon. 7: 805-857

*IWASAKI, N. - 1993: Distribution of meiobenthic copepods from various habitats in Pauatahanui Inlet, New Zealand. New Zealand Journal of Marine and Freshwater Research 27: 399-405

[*Growth and changes of cuticular structures of adult females of the symbiotic copepod *Scotomyzon gibberum* Scott, 1894 (Copepoda, Siphonostomatoida, Asterocheridae)*]
*SMURNOV, A.V. - 1993: Pervaya dlya Belogo morya hakhodka
simbioticheskoj kopepody *Scottomyzon gibberum* (Scott) (Otr.
Siphonostomatoida), assotsirovannoi s morskoi zvezdoj
[First record of the symbiotic copepod *Scottomyzon gibberum*
(Scott) (Siphonostomatoida) in the White Sea, associated with
the seastar *Asterias rubens*]

1994

BUTLER, N.M. - 1994: Lipid storage in *Diaptomus kenai* (Copepoda;
Calanoida): effects of inter- and intraspecific variation in
food quality. Hydrobiologia 274: 9-16

CONWAY, D.V.P., I.R.B. McFADZEN & P.R.G. TRANNER - 1994:
Digestion of copepod eggs by larval turbot *Scophthalmus
maximus* and egg viability following gut passage. Mar. Ecol.
Prog. Ser. 106: 303-309

COSTANZO, G., N. CALAFIORE & N. CRESCENTI - 1994: Copepods of
Doridicola longicauda (Claus, 1860) (Copepoda:
Pocilostomatoida: Lichomolgidae) associated with *Sepia

Macrocyclops fuscus (Jurine, 1820) (Copepoda, Cyclopoida)
from Ontario with a description of naupliar stages. Journal of
Plankton Research 16 (1): 9-21

DAMGAARD, R.M. & J. DAVENPORT - 1994: Salinity tolerance,
salinity preference and temperature tolerance in the
high-shore harpacticoid copepod *Tigriopus brevicornis*. Mar.
Biol. 118: 443-449

n.sp. (Copepoda, Calanoida) from Thailand. Hydrobiologia 273:
101-110

EDGAR, N.B. & J.D. GREEN - 1994: Calanoid copepod grazing on
phytoplankton: seasonal experiments on natural communities.
Hydrobiologia 273: 147-161

EINSLE, U. - 1994: *Cyclops kikuchii* Smirnov, 1932 (Copepoda,
Cyclopoida), eine selbständige Art aus süddeutschen
Gewässern. Crustaceana 66 (2): 240-246

FESSENDEN, L. & T.J. COWLES - 1994: Copepod predation on
Prog. Ser. 107: 103-111

GLIWICZ, Z.M. & W. LAMPERT - 1994: Clutch-size variability in
Diaphnia: Body-size related effects of egg predation by

GLIWICZ, Z.M. & G. UMANA - 1994: Cladoceran body size and
vulnerability to copepod predation. Limnol. Oceanogr. 39 (2):
419-424

*GRYGIER, M.J. - 1994: Developmental patterns and hypotheses of
homology in the antennules of Thecostracan nauplius larvae
(Crustacea). Acta Zoologica (Stockholm) 75 (3): 219-234

HART, R.C. - 1994: Equiproportional temperature-duration
responses and thermal influences on distribution and species
switching in the copepods *Metadiaptomus meridianus* and
Tropodiaptomus spectabilis. Hydrobiologia 272: 163-183

*LOTUFO, G.R. - 1994: Cyclopina (Copepoda, Cyclopoida) from Brazilian sandy beaches. Zoologica Scripta, 23 (2): 147-159

MUEMA MAVUTI, K. - 1994: Durations of development and production estimates by two crustacean zooplankton species Thermocyclops oblongatus Sars (Copepoda) and Diaphanosoma excisum Sars (Cladocera), in Lake Naivasha, Kenya. Hydrobiologia 272: 185-200

*NAGASAWA, K., T. TAKAMI & Y. MURAKAMI - 1994: Lepeophtheirus salmonis (Copepoda: Caligidae) from white-spotted charr (Salvelinus leucomaenis), juvenile Chum Salmon (Oncorhynchus keta), and Japanese Dace (Tribolodon hakonensis) from northern Japan. Scientific Reports of the Hokkaido Fish Hatchery 48: 95-97

*NAGASAWA, K., S. URAWA & V.A. DUBININ - 1994: A parasitological survey of sockeye salmon (Oncorhynchus nerka) and Dolly Varden (Salvelinus malma) from the Ozernaya river system, Kamchatka. Scientific Reports of the Hokkaido Salmon Hatchery 48: 17-21

CANDIDATE MEMBERS

BRANDORFF, G.-O. Dr.
Wulfsdorfer-Weg 64
D-22926 AHRENSBURG
Germany

KLEPPEL, G.S. Dr.
Nova University
Oceanographic Center
8000 North Ocean Drive
DANTA, FL 33004
USA

LEE, Chu Dr.
National Fisheries Research & Development Agency
Shirang-ri, Kijang-up
Yangsan-gun
KYOUNGSANGNAM-DO 629-900
Korea

McKENNY, T. Dr.
National Fisheries Service
28 Tarzewel Drive
NARRANGENSETT, RI 02882-1199
USA

PIEPER, R.E. Dr.
Fish Harbor Marine Lab
University of Southern California
820 S. Seaside Avenue
TERMINAL ISLAND, CA 90731
USA
e-mail: r.pieper@omnet.com

SMURNOV, A.V. Dr. and
IVANENKO, V.N.
Department of Zoology
Biology Faculty
Moscow State University
MOSCOW, 119899
Russia
e-mail Dr. Smurnov:
avsFb7@ompnet.npimsu.msk.su
e-mail Mr. Ivanenko:
ivanenkonv@bio.msu.su

SUH, H.-L. Dr.
Department of Oceanography
Chonnan University
KWANGJU, 500-757
Korea
CHANGE OF ADDRESS

BROWNELL, Ch. L. Dr.
10621 Keel Avenue
GARDEN GROVE, CA 92643
USA

GA VIRIA, S. Dr.
Biozentrum
Althanstrasse 14
A-1090 WIEN
Austria

HIROTA, R. Dr.
Higashiko-Umatate
Misumi-machi
Uto-gun
KUMAMOTO 869-32
Japan

I W A SAKI, N. Dr.
Usa Marine Biological Inst.
Kochi University
Usa-cho, Tosa
KOCHI 781-11
Japan

KU RBJEWEIT, F. Dr.
Ernst-Moritz-Arndt Universität
Geographisches Institut
Koordinierungsbüro Boddenforschung
Friedrich-Ludwig-Jahn-Str. 16
D-17489 GREIFSWALD
Germany

M ORAN, J.
Department of Biological Sciences
Simon Fraser University
BURNABY, British Columbia
Canada V5A 1S6
FAX (604) 291-3496
e-mail: JMORAN@SFU.CA

MOREIRA, G. Dr.
Instituto de Biociencias
Dept. de Fisiologia Geral
Universidade de Sao Paulo
Caixa Postal 05499 SAO PAULO SP
Brazil

SCHIZAS, N.V.
Department of Biology and
Baruch Inst. for Marine Biology
and Coastal Research
COLUMBIA, SC 29208
USA
e-mail: t420031@UNIVSCVM.CSD.
SCAROLINA.EDU

CHANGE OF E-MAIL ADDRESS

HO, J.-s. (Vice President of WAC): JSHO@CSULB.EDU

LIST OF E-MAIL ADDRESSES

Rafael Arocena University of Uruguay LIMNO@FCIEN.EDU.UY
Annemarie Avenant-Oldewage Rand Afrikaans University WHO@RAU3.RAU.AC.ZA
Ulf Bamstedt University of Bergen ULF.BAMSTEDT@IFM.UB.NO
Pamela I. Blades-Eckelbarger University of Maine MAINE.CMS ATT.P.ECKELBARGER (onnet)
Walter A. Boeger UFPR WBOEGER@BRUFPR.BITNET
Ruth Böttger-Schnack Universität Kiel DSCHNACK@MEERESKUNDE.UNI-KIEL.D400.DE
James E. Bron University of Stirling JEB1@UK.AC.STR.FORTH
Carolyn W. Burns University of Otago ZOOLOGY@OTAGO.AC.NZ
Patricia Chow-Fraser McMaster University CHOWFRAS@SSCVAX.CIS.MCMaster.CA
Bruce C. CoulI University of South Carolina N090012@UNIVSCVM
Hans-U. Dahms Universität Oldenburg HUDAUMS@HRZ1.PCNET.UNI-OLDENBURG.DE
The World Association of Copepodologists
Application for Membership

I, ____________________________, hereby apply for membership in the World Association of Copepodologists (WAC), recommended by the following two Active or Founder Members:

1. ____________________________ First ____________________________ (Signature)
 Last Name (Family Name)

2. ____________________________ First ____________________________ (Signature)
 Last Name (Family Name)

Mailing address: __

__

__

Telephone: ____________________________ Fax: ____________________________

E-mail address(es): __

Date of Birth: ____________________________ Highest Academic Degree: ____________________________

Field(s) of interest: __

I authorize my name, address, and data regarding my research interests to be entered in the database maintained by the WAC and made available to interested colleagues.

Signature and Date: ___

Nominations: Mail this form to: Dr. Janet W. Reid
General Secretary, WAC
Dept. Invertebrate Zoology, MRC-163, National Museum of Natural History
Smithsonian Institution, Washington DC 20560 USA

Upon receipt of this form, payment of one or more year's dues, and approval by the Executive Council, each applicant will be considered a Candidate Member and will begin receiving the MONOCULUS-Newsletter. A list of Candidate Members will be presented to the general membership at the next regular business meeting (at the Sixth International Conference on Copepoda, Oldenburg, Germany, 1996). Candidates approved by the general membership become Active Members.

Dues: Dues (US $12.00 or DM 20.00 per annum) payable by Founder, Active and Candidate Members may be paid up to two years in advance. Dues may be paid in person at WAC conferences, or by mail to:
 Dr. Gerd Schriever
 Treasurer, WAC
 BIOLAB Forschungsinstitut
 Kielg Str. 51
 D-24594 Hohenwestedt, Germany

Europeans may send their personal Euro-Cheques in German Marks. Americans and Canadians should send their personal checks payable to WAC, while all others should use international money orders or bank drafts (cash) in US $ and make these payable to the following account: No. 7233190, Commerzbank Kiel, mark "WAC, c/o Dr. G. Schriever". Dues may also be paid in US $ cash.

Updated June, 1994