THE GROUNDWATER FAUNA OF ITALY: A SYNTHESIS

BY

GIUSEPPE LUCIO PESCE
Istituto di Scienze Ambientali, University of L’Aquila,
Piazza Regina Margherita, 7, 67100 L’Aquila, Italy

SUMMARY
After a brief historical review of the stygobiological research in Italy, stygobionts or eustygophiles from the groundwaters of this country are listed and discussed.
Through systematic and biogeographic analysis and relationships within the most significant taxonomic groups, a subdivision of the Italian territory into five stygфаunal provinces, viz. Alpine, Appenine, Sardinian, Apulian, and Sicilian, is proposed.

RÉSUMÉ
Après un succint aperçu historique sur les recherches stygobiologiques en Italie, on présente une liste commentée des stygobies ou des eustygophiles des eaux souterraines de ce pays.
Une analyse systématique et biogéographique ainsi que l’étude des relations à l’intérieur des groupes taxonomiques les plus significatifs, permettent de proposer une division du territoire de l’Italie en cinq provinces styg фаunistiques: Alpine, Apennine, Sarde, d’Apulie, et Sicilienne.

INTRODUCTION AND HISTORICAL REVIEW
The extensive nature of karstic phenomena, as well as the diversified geomorphology, hydrography and climate, have resulted in a remarkable range of different groundwater environments in Italy, viz. inland and coastal caves, superficial and deep phreatic networks, interstitial and hyporheic substrates and other infiltration zones (fig. 1).
This situation has led, long since, Italian and some foreign scientists to take a great interest in the Italian underground habitat and organisms.
As far as we know, the first discovery of aquatic subterranean animals in Italy, as well as in the World, is dated as far back as 1550, when Trissino referred to small eyeless shrimps found in subterranean waters of the cave “Covoli di Costozza” in Venetia (north Italy); these animals were much later identified as amphipod crustaceans by Schellenberg (1935), who described them as *Niphargus stygius costozzae*.
More than two centuries later, Pollini, in his little book “Viaggio al lago di Garda e al monte Baldo” (1816), reported the discovery of another amphipod crustacean from the same region, as “*Cancer pulex*” (= *Niphargus bajuvaticus* grandii Ruffo). Successively, Garbini (1895, 1896) published some preliminary notes regarding his investigations on the styg фаuna of wells in Verona.
(Venetia), but this author didn’t continue his studies. Other scattered information on Italy’s stygofauna, at that time, can be found in the papers by Costa (1857), Brian (1914), Parona (1880) and Bensa (1900).

Subsequently, in the following years, important researches on the stygofauna of Italy were promoted and carried out by Bottazzi e a.o., Stammer, Benedetti, Gerlach and Ruffo, who intensively investigated interstitial, hyporheic and cave waters in Venetia, Tuscany and Apulia, discovering numerous remarkable stygobionts among crustaceans (cyclopoid and harpacticoid copepods, ostracods, Thermosbaenacea, Mysidacea, amphipods, isopods, decapods), water mites, nematods, gastropods and trilob turbellarians. The above material was later on studied and published by numerous authors, such as Caroli (1923, 1924, 1937); Bottazzi e a. (1923); Razzaudi (1925); Stammer (1930, 1932, 1935); Arcangeli (1938); Klie (1938); Kiefer (1938, 1955, 1957); Chappuis (1938, 1953, 1954); Ruffo (1937, 1938, 1947, 1949, 1952, 1953, 1955, 1958); Viets (1939); Benedetti (1942); Lombardini (1944); Gerlach (1952); Andrassy (1959, 1962), who described or recorded most interesting stygobiont species of cyclopoid copepods (*Metacyclops stammeri* Kiefer, *Metacyclops subdolus* Kiefer, *Metacyclops minutus* (Claus)), harpacticoid

During 1938, occasional investigations in cave habitats of north Apulia (south Italy) were carried out by Pomini; some papers were produced by Ghirardelli & Cricca Gordini (1947), Sciaccitano (1948) and Ruffo (1948), but no remarkable new discoveries were made.

It was not until the years 1950 to 1975 that the stygofauna of Italy received special consideration, and the number of investigators of the aquatic underground systems of this country proliferated greatly. Through these years, in fact, many systematic and faunistic researches were organized, and valuable papers were published by several authors, such as Ruttner-Kolisko (1956), who investigated interstitial waters of north Italy, discovering the curious primitive microannelid *Rheomorpha neiswestnovae* Lastockin; Stella (1951, 1957) and Stella & Baschieri (1953) explored cave waters of Tuscany, discovering the thermostoanacean *Monodelia argentinii* Stella in the cave “Punta degli stretti”; Cottarelli (1969-1975) who executed intensive studies on the harpacticoid fauna from interstitial waters of the central Apennines, Sardinia and Apulia; Ruffo (1961-1968) promoted important research on hyporheic and phreatic waters of Venetia, including the noteworthy discovery of the amphipod *Metaingolfiella mirabilis* Ruffo from phreatic waters of south Apulia; Ruffo & Vigna Taglianti (1968, 1975) and Vigna Taglianti (1966-1975) accurately studied the amphipods from cave and phreatic systems of Italy, comprising, besides other interesting species, the new genus *Ivanella* from the island of Elba (Tuscany); Delamare Deboutteville (1960) recorded the first syncarid from this country, viz. the bathynellid *Bathynella natans* Vejdovski forma *stammeri* (= *Antrobathyrella stammeri* (Jacobi)) from the interstitial waters of Venetia; Argano (1968) and Argano et al. (1975) conducted important research on isopods from groundwaters in Italy; Pesce & Vigna (1975) investigated coastal groundwater of east Italy; Sborni et al. (1971, 1975) reported on the cave fauna of the central Apennines; Del Papa (1973) and De Beauchamp (1955) recorded stygobiont triclads turbellarians from caves in the Abruzzes and Liguria; Kiefer (1963, 1967, 1968) executed systematic studies on the cyclopid and harpacticoid copepods from interstitial waters of north Italy; Sambugar (1970) continued the work of Ruffo on the interstitial waters in Venetia.

During the same time, other authors (Francisco, 1955; Sanfilippo, 1953; Conci, 1951; Patrizi, 1954; Lanza, 1961; Parentan, 1965; Cerruti, 1968; Martinotti, 1968; Boscollo, 1968, 1969, 1972, 1974; Puddu & Pirodda, 1973;
Capolongo et al., 1974) provided some general reviews regarding the stygofauna of certain regions, such as Liguria, Piedmont, Venetia, Tuscany, Sardinia, Latium and Apulia, as well as defined the distribution or the “status” of some systematic groups in the groundwaters of Italy. Other authors (Brian, 1955; Arcangeli, 1952; Noodt, 1955; Argano & Henry, 1972; Serban, 1973 a, b; Karaman, 1975) published notes on the taxonomy of syncarids, amphipods, asellid isopods and copepods.

In later years, from 1975 onward, stygobiological research in this country was successfully continued by some very active zoological institutes or laboratories and Museums (Roma, L’Aquila, Padua, Catania, Naples, Verona, Siena) which incorporated stygological investigations in their programs.

During the last few years the literature contains very many papers by numerous scientists, who very much enlarged the knowledge of the stygofauna of Italy. Among these, important contributions are due to the following authors: Ferrarese & Sambugar (1976) and Braioni et al. (1980) on the hyporheic biocoenoses of some rivers of north Italy, as well as taxonomy of Rotatoria, oligochaetes and harpacticoid copepods; Riolfatti et al. (1976), who firstly examined the problem of pollution in groundwaters of Italy; Caruso & Costa (1978), who reviewed the stygofauna of wells, volcanic and karstic caves in Sicily; Karaman & Ruffo (1977) on groundwater amphipods of Sicily; Argano & Pesce (1979), Pesce (1976-1980) and Pesce et al. (1978a, 1978b, 1979), who intensively investigated phreatic habitats in central and southern Italy; Cottarelli et al. (1978-1981) on harpacticoid copepods; Benazzi & Gourbault (1977) on triclads turbellarians; Bodon (1980) and Giusti et al. (1980, 1981, 1982) on the systematics of hydrobioid gastropods; Bodon & Argano (1982) on asellid isopods; Dumnicka (1980) on oligochaetes; Kiefer (1981) on cyclopoid and harpacticoid copepods; Danielopol (1981) on ostracods; Serban (1977) on syncarids; and Ariani (1982), reviewing Apulia’s stygofauna.

These studies have contributed to a very large number of species new to the country and several taxa new to science. In particular, very interesting findings are those concerning the amphipods, with numerous new species of the genus *Niphargus* and the species *Sarthrogrammarus catalambe* Karaman & Ruffo, *Bogidiella silverti* Pesce, *B. aputina* Pesce and *Hadzia adriatica* Pesce; the isopods, with the species *Typhlocicrolana* cf. *moraguesi* Racovitza, *Stenastellus assorilai* Argano, *S. nurgicus* Argano, *Proasellus acutianus* Argano & Henry, *P. vignai* Argano & Pesce, *P. amiterninus* Argano & Pesce, *P. adriaticus* Argano & Pesce, *P. ligusticus* Bodon & Argano; the syncarids, with the species *Sardobathyrella cottarelli* Serban; the gastropods with the new genus *Arganiella* and several species of the genera *Bythiospeum*, *Avenonia*, *Pseudavenonia* and *Molettissaria*; the oligochaetes with the species *Peloscolex pescet* Dumnicka; the thermosbaenaceans with a *Monodella* species from Sicily; the ostracods with the species *Mixtacandona cottarelli*; and, finally, the copepods with a great number of stygobiont species
of different genera, such as Acanthocyclops, Nitocrella, Diacyclops, Graeteriella, Parapseudoleptomesochra, Parastenocaris, Elaphoidella, Caeathronectes, Ichthusella, Arenopontia, Delamarella, Kliopsyllus, Apodopsyllus, etc.

From the above survey it appears that many papers have been produced on the stygofauna of Italy in past years and that extensive research is still in progress. Nevertheless, we actually dispose of enough information only for certain regions (Liguria, Venetia, Tuscany, Sardinia and Apulia); for other ones, such as the Abruzzi, Campania, Latium, Sicily, Molise, Calabry, Basilicata, Umbria, etc. we still have no, or scattered and incomplete, data. However, we dispose already of a large amount of information about numerous and significant stygobiont groups (cyclopoid and harpacticoid copepods, ostracods, isopods, amphipods, synkarids, thermosbaenaceans, mysids, decapods, gastropods, triclads turbellarians, water mites, amphibians) to outline a provisional, faunistical picture, as well as a biogeographical subdivision of Italy from a stygofaunistical standpoint.

The author well realizes that the following survey could be far from complete and that some chances of error or omission have not been successfully avoided, but it is hoped, as well, that the present report could be a workable basis for future studies, and will lead to additional discoveries and to a full understanding of Italy’s stygofauna.

ACKNOWLEDGEMENTS

I am indebted and particularly grateful, for useful taxonomic or faunistic information, to Drs. Schminke (University of Oldenburg), Rouch (Laboratoire Souterrain, Sain Giron), Rufo (Museo Civico di Storia Naturale di Verona), Bader (Natural History Museum, Basel), Dumnicka (Laboratory of Water Biology, Krakow), Giusti (Istituto di Zoologia, Siena), Danielopoul (Institut für Limnologie, Gaisberg), Ciculani and Bologna (Istituto di Scienze Ambientali, L’Aquila) and Argano (Istituto di Zoologia, Roma).

TAXONOMIC REVIEW

Copepods

This group of crustaceans is widely distributed in about all kinds of underground aquatic habitats of Italy, viz. interstitial, phreatic, hyporheic, spring and cave waters. Many stygobionts, or eustygophiles, may be found amongst the harpacticoids, a lower number are known among the cyclopids, which nevertheless, include a great amount of stygophiles or stygoxenes; nothing is known until now on stygobiont or eustygophilic calanoid copepods from this country.

As to the origin, different models of colonization could be proposed for the Italian groundwater cyclopoid and harpacticoid copepods. Some genera are directly sea-originated, either through the coastal, interstitial habitat (Halicyclops, Metacyclops, Nitocrella, Parapseudoleptomesochra, Parastenocaris) or through karstic environments (Laophonte, Psilocomastus); other ones (Diacyclops,
Eucyclops, Graeteriella, Speocyclops, Bryocamptus s.l., Elaphoidella, Moraria) colonized the groundwater systems of Italy directly from superficial fresh waters, during different geologic epochs as a result of drastic climatic changes. Among the sea-originated species, a few, such as Nitocrella stammeri and Parapseudolep- tomesochra italică could have dispersed actively to previously uncolonized areas due to their high degree of salinity tolerance ("active migration model"); some genera (Schizopera, Halicyclops) could be considered "thalassoid". The origin of other genera, such as Thermocyclops and Ceuthonectes is difficult to understand since, up to now, they show discontinuous and doubtful distributions, or they include only isolated groundwater species.

The present knowledge of copepods fauna of Italy is fairly complete and satisfactory, thanks to the work and the papers of numerous authors, such as Kiefer (1938-1981), Chappuis (1938-1954), Cottarelli et al. (1969-1981), Lindberg (1956), Noodt (1955), Pesce & Fabrizi (1979), Pesce & Maggi (1979), Pesce & Petkovski (1980) and Stella (1957).

Up to now, the following stygobiontes or eustygophiles are known from groundwater of Italian territory:

- Halicyclops dalmatinus Petkovski (phreatic waters, Apulian province)
- Halicyclops troglodites Kiefer (phreatic waters, Apulia, Sardinia)
- Eucyclops subterraneus (Graeter) (phreatic waters, central Apennines)
- Eucyclops subterraneus damiani Petkovski (phreatic waters, central Apennines)
- Cyclops (Microcyclops) sanfilippoi Brian (cave waters, north-west Apennines)

(= cop. IV of Diacyclops sp.?)
Fig. 3. Distribution of the cyclopid genus *Spongocyclops* Kiefer in Italy: 1, *S. franciscoloi* (Brian); 2, *S. cf. demetienis* (Scourfield); 3, *S. infernus* (Kiefer); 4, *S. species*; 5, *S. sardus* Lindberg; 6, *S. italicus* Kiefer; 7, *S. species incerta*.

Acanthocyclops agamus Kiefer (cave waters, south Apennines)
Acanthocyclops venustus italicus Pesce & Maggi (phreatic waters, central Apennines)
Acanthocyclops sambugare Kiefer (hyporheic waters, north-east Alpine region)
Acanthocyclops brachypus Kiefer (phreatic waters, Sardinia)
Diacyclops languidoides languidoides (Lilljeborg) (interstitial, cave and phreatic waters, widely distributed, except Sardinia and Sicily)
Diacyclops languidoides hypnicola (Gurney) (phreatic waters, widely distributed, except Sicily)
Diacyclops languidoides clandestinos (Kiefer) (interstitial waters, widely distributed, except Sardinia and Sicily)
Diacyclops languidoides italicus (Kiefer) (interstitial and cave waters, Alpine region)
Diacyclops languidoides goticus (Kiefer) (cave waters, Alpine region)
Diacyclops languidoides szchokkii (Graeter) (cave and phreatic waters, north-central Apennines)
Diacyclops languidoides aprinus Pesce & Fabrizi (phreatic waters, central Apennines)
Diacyclops languidoides nagiassionensis Kiefer (phreatic waters, south Apennines)
Diacyclops eucosmatodes var. cosana Stella & Baschieri Salvadori (cave waters, Tuscany)
Diacyclops antrincola Kiefer (cave and phreatic waters, central-south Apennines)
Diacyclops raffei Kiefer (interstitial waters, north-east Alpine region)
Metacyclops stammeri Kiefer (cave and phreatic waters, Apulia)
Metacyclops subtilus Kiefer (cave and phreatic waters, Apulia, Sardinia)
Thermocyclops oblongatus (Sars) (cave and phreatic waters, central and south Apennines)
Spongocyclops infernus (Kiefer) (interstitial waters, Alpine region)
Spongocyclops demetienis (Scourfield) (interstitial waters, north Apennines)
Fig. 4. Distribution of the harpacticoid copepods *Parapseudoleptomesocha italica* Pesce & Petkovski (circles) and *Elaphoidella elaphoides* (Chappuis) (squares) in Italy.

Socyclops italicus Kiefer (cave and phreatic waters, central-south Apennines)
Socyclops franciscoloi (Brian) (cave waters, west Apennines)
Socyclops sardus Lindberg (cave waters, Sardinia)
Graeterella unisetigera (Graeter) (interstitial waters, Alpine region and central Apennines)
Nitocra intermedia Pesce (phreatic waters, Apulian Province)
Parasomespha brevisfarca Galhano (hyporheic waters, Sardinia)
Moraria michelletae (?), Brian (cave waters, Alpine province)
Moraria varia (Graeter) (phreatic, interstitial water, widely distributed)
Moraria insolete Chappuis (cave waters, Alpine province)
Nitocrella stammeri Chappuis (phreatic and cave waters, central Apennines, Apulia, Sicily and Sardinia)
Nitocrella jugurna Cottarel (phreatic waters, central Apennines)
Nitocrella psammophilica Chappuis (interstitial waters, east Alpine region and central Apennines)
Nitocrella achaiae Pesce (phreatic waters, central Apennines)
Nitocrella beatrixics Cottarel (interstitial waters, Sardinia)
Nitocrella morettii Pesce (phreatic waters, central Apennines)
Parapseudoleptomesocha italica Pesce & Petkovski (phreatic and cave waters, central-south Apennines)
Parapseudoleptomesocha minoriae (Chappuis & Rouch) (phreatic waters, Sardinia)
Elaphoidella gracili (Sars) (interstitial waters, Apennines, Sardinia)
Elaphoidella elaphoides (Chappuis) (phreatic waters, central-south Apennines)
Elaphoidella plutonis (Chappuis) (cave and interstitial waters, south Apennines)
Elaphoidella plutonis quadririspinosa Chappuis (cave waters, south Apennines)
Elaphoidella ruffi (Chappuis) (interstitial waters, east Alpine region)
Elaphoidella pseudophreatica (= E. phreatica) (Chappuis) (interstitial and phreatic waters, Alpine region, Apennines)
Elaphoidella dubia Kiefer (interstitial waters, east Alpine region)
Elaphoidella bidens (Schmeil) (interstitial waters, Alpine region)
Elaphoidella bidens coronata (Sars) (interstitial waters, Apennines)
Elaphoidella aequalis Cottarelli & Torrisi (interstitial waters, Sardinia)
Elaphoidella tiberina Pesce (interstitial waters, central Apennines)
Elaphoidella sp. (phreatic waters, Tuscany, central Apennines)
Arenotella germanica Kunz (coastal interstitial waters, widely distributed)
Ichnusella rionae Cottarelli (hyporheic waters, Sardinia)
Ichnusella pasquinii Cottarelli (coastal groundwater, central Apennines)
Arenonatia nea Cottarelli (coastal groundwater, Sardinia)
Arenonatia subterranea Kunz (hyporheic waters, Sardinia)
Arenonatia acahata Chappuis (interstitial waters, widely distributed)
Delamarella galatea Cottarelli (coastal groundwater, Sardinia)
Klipsyllus minutus Maasry (coastal groundwater, central Apennines, Tuscany)
Apodopyllus lyneaeum Cottarelli (interstitial waters, central Apennines)
Cnuthoneutes sericus Chappuis (interstitial waters, Alpine province)
Cnuthoneutes sp. (hyporheic waters, Sardinia)
Psilocampius monachus Chappuis (cave waters, Apulia)
Bryocampius unsucessus Kiefer (interstitial waters, Alpine province)
Bryocampius dentatus Chappuis (cave waters, Apulia)
Laophonte stela Chappuis (cave waters, Apulia)
Parastenocaris calicorne Cottarelli (hyporheic waters, Sardinia)
Parastenocaris proserpina Chappuis (interstitial waters, central and southern Apennines)
Parastenocaris italica Chappuis (interstitial waters, Alpine province and central Apennines)
Parastenocaris pasquinii Cottarelli (interstitial waters, central Apennines)
Parastenocaris amylana Cottarelli (interstitial waters, central Apennines)
Parastenocaris hera Cottarelli (hyporheic waters, south Apennines)
Parastenocaris recina Chappuis (interstitial waters, central and southern Apennines)
Parastenocaris tyroli Cottarelli (hyporheic waters, Sardinia)
Parastenocaris amathina Cottarelli (hyporheic waters, Sardinia)
Parastenocaris ruffi Chappuis (interstitial waters, Alpine province)
Parastenocaris acarunsia Noord (interstitial waters, Alpine province)
Parastenocaris getrudae Kiefer (hyporheic waters, Alpine province)
Parastenocaris seneris Cottarelli & Maiolino (interstitial waters, central Apennines)
Parastenocaris stelae Cottarelli a.o. (hyporheic waters, Sardinia)
Parastenocaris admone Cottarelli a.o. (hyporheic waters, Sardinia)
Parastenocaris sarda Cottarelli & Torrini (hyporheic waters, Sardinia)
Echinocampius pilosus (VanDousse) (interstitial waters, Alpine province)
Echinocampius georgiitchi (Chappuis) (interstitial waters, Alpine province)
Psammopyllus maritae Cottarelli (hyporheic waters, coastal and southern Apennines, Sardinia)

Ostracoda

Although ostracods are largely distributed in about all kind of subterranean habitats, those of Italy are still very poorly known. Moreover, the few available data relate only to some regions of north Italy, to Sardinia and Apulia; for other regions of central and southern Italy, as well as for Sicily, we dispose of no or very doubtful information. Our present knowledge of these interesting underground crustaceans is due solely to the papers of Klie (1938) and Danielopol (1981), and to the handbook by Ghetti & Mckenzie (1981) treating both the ground- and surfacewater ostracod fauna of Italy.
Up to now, the following species are known from groundwaters of Italy:

Pseudolimnocythere hypogaean Klie (cave and phratic waters, Apulia)
Sphaeromicola stammeri Klie (cave and hyporheic waters, Alpine province; stygophil?)

Cryptacandona caurai Kaufm. (cave waters, Alpine province; stygophil?)
Mixtacandona stammeri Klie (cave waters, Apulia)
Mixtacandona cettantii Danielopol (hyporheic waters, Sardinia)
Mixtacandona sp. gr. chappusi-laisi (hyporheic waters, Sardinia)
Pseudocandona sp. aff. parallela (Löffl) (hyporheic waters, Sardinia)

Isopods

The isopods, as a whole, constitute a group of crustaceans quite adaptable and specialized to almost all types of groundwater habitats. They are widely distributed in Italy, where six families, with numerous stygobiont species and subspecies, are known, viz.: Asellidae, that comprise species derived directly from surface fresh-waters; Cirolanidae, Sphaeromatidae, Microcerberidae, Microparassellidae and Stenasellidae, comprising species directly sea-originated, some of which colonized the aquatic underground systems at a rather recent age; some genera that belong to the Stenasellidae, Cirolanidae, Microparassellidae and Sphaeromatidae are assumed to be “thalassoid” elements, that migrated before the Quaternary in the interstitial coastal waters, as it is shown by their peculiar “mediterranean” distribution and ecology (“Regression model evolution”, Stock, 1977). According to this model, the above groups, as well as many other Italian crustaceans that will be discussed below (mysids, amphipods of the genera *Pseudoniphargus* and *Hadjia*, Thermosbaenacea and the prawn *Typhlocaris*), got gradually adapted to continental groundwaters through stranding in the coastal interstitial habitat because of the Mediterranean regressions during the Tertiary period. This model has been recently supported, for the Monilistrinae isopods from the Italian groundwaters, by studies on divergence time between the genera *Monolistra* and *Sphaeroma* (Caccione et al., 1982); this work confirmed, as well, that cladogenetic events that led to the separation of the above genera and that the speciation in *Monolistra* occurred from the Messinian (Mediterranean salinity crisis) to the upper Pliocene.

The asellid, *Proasellus coxalis* (Dollfus) s.l. is frequently found, as stygophilous or stygoxenous element, in Italian groundwaters, but sometimes with populations (Sardinia) showing varying levels of morphological adaptations, viz. depigmentation and eye reduction, that suggest different phases of groundwater invasion. According to Pesce & Argano (1980) these populations, that could be quite isolated from epigean ones of the same species, migrated into groundwaters, through phreatic interstices, due to the unstableness of the surface aquatic systems of such islands; similar situations are reported from Crete (Greece), Turkey and Poland, for the epigean *Asellus aquaticus* (L.) (Argano & Pesce, 1978; Skalski, 1981). Some of the populations from Sardinia
are still under study (Argano, pers.com.). At present, the following species and subspecies are known for the Italian territory; but some other ones (genera Proasellus and Stenasellus) from the groundwaters of Sardinia and the central Apennines (Umbria) are in course of description or publication.

Proasellus cavaticus (Leydig) (cave waters, Alpine province)
Proasellus franciscoloi (Chappuis) (cave waters, Alpine province)
Proasellus amiciiinus Argano & Pesce (phreatic waters, central Apennines)
Proasellus gardini Arcangeli (phreatic waters, Alpine province)
Proasellus patrizii Arcangeli (cave waters, Sardinia)
Proasellus adriaticus Argano & Pesce (phreatic waters, central Apennines)
Proasellus signatus Argano & Pesce (hyporheic waters, central Apennines)
Proasellus pavani Arcangeli (cave waters, Alpine province)
Proasellus diminutus Sket (hyporheic waters, Alpine province)
Proasellus acutissimus Argano & Henry (hyporheic waters, Tuscany and Latium)
Proasellus ligusticus Bodon & Argano (karstic spring, Apennines)
Typhlocotalona cf. moraguesi Racovitz (coastal phreatic waters, Sicily)
Monolistra caeca julia (Feruglio) (cave waters, Alpine province)
Monolistra berica (Fabiani) (cave waters, Alpine province)
Monolistra boldori boldori Brian (cave waters, Alpine province)
Monolistra boldori bergonius Arcangeli (cave waters, Alpine province)
Monolistra pavani Arcangeli (cave waters, Alpine province)
Monolistra racovitzae Strouhal (spring waters, Alpine province)
Monolistra schutlaenderi Stammer (cave waters, Alpine province)
Microcerberus remanei Chappuis & Delamare (interstitial waters, widely distributed)
Microcerberus arenicola Chappuis & Delamare (coastal groundwaters, south Apennines)
Microcerberus ruffoi Chappuis (phreatic waters, Alpine province)
Microcharon arganoi Pesce & Teté (phreatic waters, Apulia)
Microcharon marinus Chappuis & Delamare (coastal groundwaters, central Apennines, Sardinia)
Angeliella phreatica Chappuis & Delamare (interstitial waters, central Apennines, Sardinia)
Senaellus racovitzai Razzaudi (cave and phreatic waters, central Apennines and Sardinia)
Senaellus nuragicus Argano (cave and phreatic waters, Sardinia)
Senaellus asorgios Argano (cave and phreatic waters, Sardinia)
Sphaeromides viri (Brian) (cave waters, Alpine province)

Amphipoda

An important and strongly diversified fauna occurs in Italy. The present knowledge of this interesting group of specialized crustaceans is complete enough, due first of all to the extensive studies by Ruffo (1937-1982) and those by some other authors, such as Karaman (1976-1980), Vigna Taglianti (1966-1975), Sket (1972) and Pesce (1979, 1980, 1981).

Fig. 6. Distribution of the amphipod genus *Bogidiella* s.l. Hertzog in Italy: 1, *B. ichnusae* Ruffo & Vigna Taglianti; 2, *B. sandeli* Coineau; 3, *B. silvrii* Pesce; 4, *B. aprutina* Pesce; 5, *B. chappuisi* Ruffo; 6, *B. albertimagni* Hertzog.
Amphipods of the Italian stygofauna, coastal groundwaters species included, are referred to 11 genera, viz.: Niphargus, including the greater part of the known species of the Italian amphipods, Rhipidogammarus, Sarothroammarus, Ilvanella, Pseudoniphargus, Hadzia, Carinurella, Salentinella, Bogidiella, Metaingolfiella and Orchestia.

As regards to the origin, some genera and species (Niphargus, Ilvanella, Carinurella and Sarothroammarus) reached underground aquatic habitat directly from epigean fresh waters; others (Hadzia, Salentinella, Bogidiella) colonized Italian groundwaters from the sea, through the mesophasmic-interstitial habitat, long ago; still others (Rhipidogammarus, Orchestia, Pseudoniphargus), due to their peculiar distribution and ecology, could be considered ‘thalassoid’ elements.

The genus Niphargus is the most widely distributed, both in the continental and insular parts of Italy, with more than 20 species and subspecies which concentrate in the Alpine region.

The following species and subspecies are, at present, known from Italy:

Niphargus ambulator Karaman (cave waters, Alpine region)
Niphargus aquilex Schiödte (cave and phreatic waters, Alpine region and central Apennines)

Niphargus bajauricus grandii Ruffo (hyporheic waters, Alpine region)
Niphargus bibeorensis Schellenberg (cave waters, Alpine region)
Niphargus canus Karaman (cave waters, Alpine region)
Niphargus castozae Schellenberg (cave waters, Alpine region)
Niphargus dancenai Benedetti (interstitial waters, Alpine region)
Niphargus duplus Karaman (interstitial waters, Alpine region)
Niphargus galeagnii Ruffo (cave waters, Alpine region)
Niphargus longicaudatus Costa (cave and phreatic waters, widely distributed)
Niphargus longidactylus Ruffo (interstitial waters, Alpine region)
Niphargus microcerberus Sei (interstitial waters, Alpine region)
Niphargus orcinus s.l. Joseph (cave and phreatic waters, central and southern Apennines)
Niphargus pareszani Ruffo & Vigna Taglianti (cave and phreatic waters, central and south Apennines)
Niphargus pasquinii Vigna Taglianti (phreatic waters, central Apennines)
Niphargus patrizii Ruffo & Vigna Taglianti (cave waters, central Apennines)
Niphargus pufetta (Sei) (interstitial waters, Alpine region)
Niphargus rufus Karaman (Alpine region)
Niphargus gr. spezier-romulus-tatarensis (cave waters, widely distributed, except Apulia, Sicily and Sardinia)

Niphargus stefanelli Ruffo & Vigna Taglianti (cave and phreatic waters, central Apennines)
Niphargus stygius s.l. Schiödte (cave waters, Alpine region)
Niphargus stygecharis italica Karaman (interstitial waters, Alpine region)
Niphargus tamannii Ruffo (cave waters, Alpine region)
Niphargus transitivus Sei (interstitial waters, Alpine region)
Rhipidogammarus rhipidophorus (Catta) (cave and phreatic waters, widely distributed)
Rhipidogammarus karamani Stock (cave and phreatic waters, central Apennines and Apulia)
Sarothroammarus cacatu (Karaman & Ruffo) (phreatic waters, Sicily)
Ilvanella inexpectata Vigna Taglianti (phreatic waters, Tuscany)
Pseudoniphargus adriaetus Karaman (phreatic waters, Tuscany, Apulia) (*)

(*) Caruso & Costa (1978) reported this species also from Sicily, but the taxonomic status of the record is still doubtful.
Hadzia minuta Ruffo (cave and phreatic waters, Apulia)
Hadzia adriatica (Pesce) (cave and phreatic waters, Apulia)
Carinurella paradoxa (Skel) (hyporheic waters, Alpine region)
Salentinae angleri Ruffo & Delamare (cave and phreatic waters, widely distributed along coasts)
Salentinae gracillima Ruffo (cave and phreatic waters, Apulia)
Bagiella chatupsis Ruffo (coastal phreatic waters, southern Apennines)
Bagiella aprutina Pesce (phreatic waters, central Apennines)
Bagiella ichnusae Ruffo & Vigna Taglianti (hyporheic waters, Sardinia)
Bagiella silveneri Pesce (phreatic waters, Sardinia)
Bagiella vandeloi Coineau (hyporheic waters, Sardinia)
Bagiella albertimagi Hertzog (interstitial and phreatic waters, Alpine region)
Metaingoffiella mirabilis Ruffo (phreatic waters, Apulia)
Orchestra remyi Schellenberg (cave waters, Sardinia)

Mysidae

At present, two stygobiont species are known from Italy, viz. Spelaemysis bottazzii Caroli and Stygiomysis hydruntina Caroli, both from coastal caves and phreatic waters of Apulia (south Italy).

In contrast with previous interpretation (Ruffo, 1955), genetic divergence and variability estimates among its populations (De Mattheis et al., 1982), suggests a recent (Pliocene) groundwater colonization by Spelaemysis bottazzii, and this consideration is according to Stock’s (1977, 1980) hypothesis that these crustaceans, as well as other “thalassoid” animals, colonized groundwaters owing to Pliocene regression of the Mediterranean sea. On the contrary, the other species, Stygiomysis hydruntina, is an ancient immigrant in the underground aquatic system of the Apulia region, which lives in isolated phreatic systems, but can occasionally migrate in superficial phreatic networks; such a condition is most similar to that of the amphipod Metaingoffiella mirabilis, also from phreatic groundwater, which can occasionally reach more superficial systems, as happened when it was, by a mere change, first discovered.

Spelaemysis bottazzii Caroli (cave and phreatic waters, Apulia region)
Stygiomysis hydruntina Caroli (cave and phreatic waters, Apulia region)

Syncarida

Syncarid crustaceans are certainly the most characteristic members of freshwater interstitial bioenoses of Italy.

Once known only throughout the Palaeartic region, at present this group shows a wide distribution, since several species and numerous new genera fairly recently have been discovered and described from South America, Australia, New Zealand and Africa.

In Italy syncarids are represented by four genera, viz. Antrobathyrella, Bathynella, Meridiobathyrella and Sardobathyrella, the first two from interstitial waters of the Alpine province, the last two from interstitial waters of the central Apennines and Sardinia; also from the central Apennines (Umbria) we recent-
Fig. 7. Distribution of syncarids in Italy: 1, *Antrobathynella stammeri* (Jacobi); 2, *Bathynella ruffoi* Serban; 3, *Bathynella lombardica* Serban; 4, *Meridiobathynella cf. rouchi* Serban; 5, *Sardobathynella cottarelli* Serban; 6, *Meridiobathynella* sp.

Ly collected material of the genus *Meridiobathynella* from phreatic waters (wells). Notwithstanding that this material is still in course of description (Schminke, in litt.), its discovery is of great interest since it proves that Italian syncarids could live also in phreatic waters, likewise it suggests that these remarkable crustaceans could be more widespread in Italy than previously thought.

Up to now, the following species are known for the Italian territory:

Antrobathynella stammeri (Jacobi) (interstitial habitat, Alpine province)

(* = *Bathynella nata* Vejdovsky forma stammeri* Jakobi)

Bathynella ruffoi Serban (interstitial waters, Alpine province)

Bathynella lombardica Serban (interstitial waters, Alpine province)

Meridiobathynella cf. rouchi Serban, Coineau & Delamare Deboutteville (interstitial waters, central Apennines)

Sardobathynella cottarelli Serban (interstitial waters, Sardinia)

Meridiobathynella sp.: (phreatic waters, central Apennines)

Thermosbenacea

This group of rare “living-fossils” is represented in Italy’s groundwaters by two species, viz. *Monodella stygicola* Ruffo, from coastal, brackish groundwaters
of the Apulian province (Salentine peninsula), and *M. argentarii* Stella, from coastal cave waters of the central Apennines (Tuscany). The former is an endemic of the Apulia; on the contrary, the latter shows a wide, pan-mediterranean distribution (west Italy, Yugoslavia, Greece).

Both species most likely originated from marine ancestors at the end of the “Tethys period”, as happened to many other stygobionts from the Italian territory, such as mysidaceans, stenaselline isopods, amphipods of the genus *Hadjzia*, etc., which actually show wide distributions, Indo-Pacific parts of the Tethys sea included.

Recently, during biospeleological research in the Sicilian province, promoted by the Institute of Zoology of the University of Catania, with the collaboration of the Zoological Institute of the University of Rome, some material of a *Monodella* species has been collected from brackish, artesian wells. This material, though it is still in study, proves, as well, that this group is more widely distributed in Italy.

Decapoda

Decapod crustaceans are poorly represented in Italian groundwaters, from which only two species, belonging to the families Atyidae and Palaemonidae, are at present known, viz.: *Troglocaris anopthalmus anopthalmus* (Kollar), reported from cave waters of Venetia, and *Typhlocaris salentina* Caroli, which is an endemic of Apulia (coastal cave waters) and one of the most extraordinary elements of the stygofauna of this province, as well as of the Italian territory.

Gastropoda

Although this group is scarcely represented in groundwaters, several blind and unpigmented gastropods have been recently recorded from both cave and phreatic waters of Italy (Bodon, 1980; Conci, 1951; Giusti, 1975, 1976; Giusti & Bodon, 1980, 1981; Giusti & Pezzoli, 1980, 1981, 1982; Bodon & Giusti, 1982; Pezzoli, 1969, 1978; Pezzoli & Giusti, 1980).

Groundwater gastropods of Italy belong to the superfamilly Hydrobioidea, including the following true stygobiont or eustygophilous genera: *Bythiospeum*, *Phreatica*, *Ictiya*, *Hadjziella*, *Arganiella*, *Avenonia*, *Pseudavenonia*, *Moitessiera* and *Islamia*, which concentrate in the west Alpine region as well as in the north-west and central Apennines; as far as we know, no or very few data are, at present, available on stygobiontes from south Italy, from Sicily and Sardinia. Other genera, such as *Hauflenia*, *Bythinella*, *Pauluccia* and *Belgrandiella* are to be considered stygophiles (crenophiles?), viz. frequently occurring in underground aquatic habitats, but living both in superficial and subterranean waters; the species belonging to these genera will be not considered here.

With regard to the origin, the gastropods of the Italian groundwaters colonized the underground water networks directly from surface waters, before
the Quaternary, in search of lower temperature, as well as for avoiding competition with larger species (Giusti & Pezzoli, 1982).

From a biogeographical point of view, the greater part of the Italian gastropods are endemic or limited to extremely reduced areas, some species showing close affinities with west Mediterranean (France) or north- and east-European faunas.

At present time the following true stygobionts or eustygophiles are known from Italy; however, extensive research on this group is still in progress (Giusti, in litt.) and this could lead to a better understanding of the distribution of groundwater gastropods in Italy, especially in the southern Apennines as well as in the islands of Sardinia and Sicily.

Bythoiceras cornucopia (De Stefani) (karstic waters, Alpine region and central Apennines)
Bythoiceras forunulianum (Pallonera) (cave waters, Alpine region)
Bythoiceras celeriensis Pezzoli & Toffolletto (karstic waters, Alpine region)
*Bythoiceras vulcan Giusti & Pezzoli (karstic waters, Alpine region)
Bythoiceras (?) fabrianiensis Pezzoli (cave waters, central Apennines)
Bythoiceras pezzoli Boetser (cave waters, Alpine region)
Ilgica (?) tellinii (Pallonera) (karstic waters, Alpine region)
Hudziella philliptostoma Kuscher (hyporheic and spring waters, Alpine region)
Islandia pusilla (Pierantini) (cave waters, south Apennines)
*

Argiogoti pesci Giusti & Pezzoli (phreatic waters, central Apennines)
Avena ligustica Giusti & Bodon (cave and spring waters, north-west Apennines and Tuscany)
*Avena parvula Giusti & Bodon (spring waters, north-west Apennines)
*

Pseudovornia pedemontana Bodon & Giusti (spring waters, Alpine region and north-west Apennines)
Moitessiera cf. simoniana (De Charpentier) (cave waters, Alpine region)

Triclad Turbellarians

The discovery of stygobiont turbellarians in groundwaters of Italy is due to Viali (1937) who described the species *Dendrocoelum (Dendrocoelidae) italicum* on material from the cave “Buco del Budrio” in the Alpine province (Lombardy). Later, other species belonging to the family Dendrocoelidae, as well as to the family Planariidae, were described or recorded from cave or spring waters of the Alpine province, the central and southern Apennines and Sardinia (Benazzi, 1938, 1955; Benazzi & Gourbault, 1977; De Beauchamp, 1955; Del Papa, 1952, 1959, 1973); no information is available on stygobiont or eustygophilous triclads from the southern Apennines as well as from Sicily.

Up to now, the following species are known for the Italian territory:

Atrioplanaria morisi Benazzi & Gourbault (cave waters, Alpine province)
Atrioplanaria cf. racoeitzai (De Beauchamp) (cave waters, Sardinian province)
Phagocata spec. (interstitial, Tuscany)
Polychlois benazzi De Beauchamp (cave waters, Alpine province)
Dendrocoelum (Dendrocoelidae) italicum Viali (cave waters, Alpine province)
Dendrocoelum (Dendrocoelidae) collini De Beauchamp (cave waters, Alpine province)
Dendrocoelum (Dendrocoelidae) benazzi Del Papa (cave waters, central Apennines)
Dendrocoelum species (cave waters, Alpine province)
Besides the above species, others (eustygophiles?) frequently occur in Italian groundwaters (cave and wells), showing a remarkable preadaptation ("passive adaptation") that could be advantageous in the groundwater environment. These uncommon and interesting species are:

- *Polydesmus felina* Dalley (cave waters, Alpine province)
- *Crenobia teratophila* (Sveinmann) (interstitial habitat, south Apennine region)
- *Crenobia alpina* (Dana) (interstitial waters, Alpine province)
- *Dugesiella gonocephala* s.l. (Dugès) (cave waters, widely distributed both in the Alpine and Apennine provinces)

Water mites

Water mites, although widely distributed both in surface and underground waters (phreatic, interstitial, hyporheic and cave habitats) of Italy, belonging to several families, e.g. Hydrachnellae and Trombidiidae, Porohalacaridae, Halacaridae and Tyroglyphidae, are still very poorly known. Up to how, in fact, the only available pertains to the following truly stygobiont or eustygophilous species:

- *Lahmannella stammeri* Viets (cave waters, Apulia province)
- *Solodanellonyx monardi* Walter (ground- and epigean waters, widely distributed in Italy)
- *Lobohalacarus weberi* (Romiijn & Viets) (cave waters, south Apennines)
- *Kauermuratcarus tardaricolus* Viets (interstitial waters, Alpine province)
- *Acherontacarus cicolani* Bader (phreatic waters, Sardinia)
- *Acarochelopoda delamarei* Angelier (coastal groundwaters, central Apennines)

However, systematic and faunistic research promoted by Dr. Cicolani of our Institute, in collaboration with Prof. Bader of the Museum of Natural History of Basel, seems to indicate that more stygobionts and eustygophiles could live in Italy’s groundwater. So, the knowledge of this very interesting, specialized group of groundwater animals may greatly be enlarged during the coming years.

Amphibia

Amphibians, as well as other vertebrates, are scarcely represented in groundwaters of Italy. Up to now, one true stygobiont species, viz. *Proteus anguinus* Laurentius, from cave waters in Carso (Trieste), is known of this country. Other species of amphibians, such as *Salamandra salamandra* (L.), *Euproctus platyccephalus* (Gravenhorst) and *Bufo bufo* (L.), that frequently occur in Italian caves, are undoubtedly stygoxenes or, at most, stygophiles.

The species of the genus *Hydromantes*, despite their wide distribution in groundwaters of Italy, cannot be discussed herein owing to their terrestrial reproductive habits.

Other groups

Other groups of organisms that frequently occur in the Italian underground aquatic systems are: Bacteria, Protozoa, Rotatoria, Cladocera, Archianellida,
Oligochaeta, Nematoda, Gastropods, Bivalvia and insect larvae. However, these groups include, for the most part, only stygogenous or stygophilous species or genera, as well as they are not, or not well investigated so far. Some incomplete information is available only for the oligochaetes and the nematods.

Among the oligochaetes three stygobiont species are known from the Alpine province and the central Apennines, viz. Haber monfalconensis Hrabe, 1966 (cave waters of S. Canziano; spring of the Monfalcone brook, near Trieste), Haber zaureli (Hrabe) (phreatic waters, Marche) and Peloscolex pescei Dumnicka also found in phreatic waters of Marche (central Apennines). Other species, all from groundwaters of the Apulia province, viz. Pristina idrensis Sperber, Pristina longiseta Ehrenberg, Pristina foreli (Piguet), Enchytraeus buchholzi Vejdovsky and Haplotauxis gordioides (Hartmann) are to be considered eustygophiles.

As for the nematods, only three species could be considered stygobiontes (or eustygophiles), viz. Stenonchulus tyrolydites Schneider, Mylonchulus cavensis (Schneider) and Anatonicus tridentatus (De Man), all from interstitial habitats of the Alpine province.

ORIGIN AND ZOOGEOGRAPHY

Through systematic, faunistic and zoogeographic relationships among the most significant stygobionts and eustygophiles, more than one route of colonization, as well as different temporal derivations, can be suggested for the groundwater fauna of Italy.

As to the origin, as far as we know, four models of colonization could be pointed out:
1) “Regression model evolution” (according to Stock’s proposition) regarding such ancient stygobionts as the thermosbaenaceans, the myiids, the microparasellid, cirolanid and monolistrine isopods, the decapod genus Typhlocaris, the gammarids Bogidiella, Hadzia and some Salentinella species, and, maybe, the ostracod Pseudolimnothere hypogaea, that originated gradually from marine ancestors that got stranded and adapted to inland groundwaters during regression periods of the Tertiary; these groups, up to now, are distributed mainly in areas once covered by Tertiary seas, as well as they show a wide distribution and plastic ecology; 2) “Active migration model” that regards those stygobionts or eustygophiles, such as numerous cyclopoid and harpacticoid copepods, the amphipods Pseudoniphargus, Orchestia and Rhipidogammarus and some water mites, that dispersed in inland uncolonized areas from the sea, through the brackish-water environments, due to their high degree of salinity tolerance; 3) “Sea — surface fresh water — groundwaters migration model” that concerns some Italian stygobionts, such as the amphipods of the genera Sarothrogammarus and Carinurella and the syncarids, that followed a route of colonization leading them from the sea into surface fresh waters and from there into underground aquatic systems; 4) “climatic refugium model” that is
related to numerous Italian stygobionts and eustygophiles (asellid isopods, ostracods, except Pseudolimnocythere, the copepod genera Speocycllops, Graeteriella, Elaphoidella and other representatives of the family Canthocamptidae, the amphipods Niphargus, Ilyanella and the hydrobioid gastropods) that colonized the groundwaters directly from surface fresh waters, somewhere at the end of Pliocene, owing to drastic surface climatic changes (e.g. the Quaternary cooling).

Some species, such as the amphipod Bogidiella chappuisi and the microparasellid isopod Microcharon marinus, as well as harpacticoid copepods of the Ectinosomidae and Cylindropsyllidae, cannot properly be placed in the above models since they have living marine ancestors or they are still colonizing the underground freshwater systems through mixohaline interstitial environments.

From a zoogeographical point of view, the Italian territory is characterized by a composite stygofauna, that includes both northern (Central-European) and southern elements, numerous species with eastern (Balkanic) or western affinities, as well as a great amount of endemism. According to the biogeographical analysis, Italy could be divided in five main stygofaunistic provinces, viz.: 1) Alpine province, comprising the territory north to the river Po and the west Alps; 2) Apennine province, the western part of Tuscany and Apulia excluded; 3) Sardinian province, including part of Tuscany; 4) Apulian province; 5) Sicilian province.

The Apennine province can be subdivided in the north-west, central and southern regions; the Apulian province, as well, can be subdivided in two stygofaunistic districts, viz.: the Gargano and the Salento-Murge complex (fig. 8).

The greatest species richness in stygobionts or eustygophiles occurs in the Alpine and Apulian provinces; on the other hand, a remarkable paucity of groundwater animals is peculiar to the Sicilian province and the southern Apennine region.

From a geological point of view, the Alpine province is marked by a noteworthy extent of karstic areas, especially in the eastern part, by a great number of caves, superficial phreatic and interstitial networks and large underground aquatic systems. This area is likewise characterized by a high number of ancient, specialized cave-dwelling, interstitial and phreatic species, that belong to different taxonomic groups, such as cyclopid and harpacticoid copepods, asellid and sphaeromatid isopods, amphipods (mainly Niphargus), syncarids, decapods, water mites, trilobed turbellarians, ostracods, gastropods and amphibians. Most stygobionts of this province are northern elements, that show close affinities with Central-European groups; others are endemics or of uncertain affinity; a few species show Mediterranean features or similarity with the East-Balkan stygofauna; the western part of this province is marked by a high percentage of southern (Apennine) elements.
This stygoaunistical area is well defined and easily distinguishable from the Apennine one, as well as from the others, mainly by its amphipod fauna, with a great number of species of *Niphargus* (about 20), some of them endemic for this province, by other specialized amphipods such as *Carinurella paradoxa* and *Bogidiella albertimagi*, exclusive cyclopid and harpacticoid copepods (*Acanthocyclops sambugarae*, *Diacyclops rufus*, *Diacyclops languardoides* *italianus*, *Diacyclops languardoides* *goticus*, *Speocyclops* *infernus*, *Parastenocaris rufus*, *Parastenocaris* *acherusia*, *Parastenocaris* *gertrudae*, *Elaphoidella rufus*, *Elaphoidella* *dubia*, *Elaphoidella* *bidens*, and the doubtful *Moraria* *michelettoae*), asellid isopods (*Proasellus* *cavaticus*, *Proasellus* *franciscoloi*, *Proasellus* *pavani*, *Proasellus* *deminutus*), sphaeromatid isopods (all the species of the genus *Monolistra*), the interesting decapod *Troglocaris* *anophtalmus*, gastropods of the genus *Bythiospeum* (with the exception of *B. fabrianensis*) and the species *Motesseria simoniana*, the triclad turbellarians (*Polycladus* *benazzi*, *Atrophanaria* *morisii* and the species of the genus *Dendrocoelum*), the specialized water mite *Kawamuracarus vardaricola* (that represents the second species of the genus), the remarkable stygobiont amphian *Proteus*...
anguinis and, at last, by a high concentration of syncarids (Bathynella raffei, Bathynella lombardica and Antrobathynella stammeri).

The Apennine province also includes many karstic areas, especially in its central part, numerous deep caves, underground rivers, springs and other infiltration zones. This province, as a whole, is characterized by a significant amount of stygobionts and by a great number of eustygophiles and “thalassoid” elements, that are widely distributed, mainly along the Adriatic sea coasts. In particular, it is interesting to point out that in this province the amphipods of the genus Niphargus strongly decrease, and they are replaced by the species of the “oricinus” complex; such a diminution is accentuated in the southern Apennines where only the species Niphargus longicaudatus is the only known for this genus. However, the northern part of the province is characterized by less stygobionts in comparison with the central part, as well as by a high frequency of northern elements, such as gastropods of the genera Ave
nionia and Pseudavenonia, cyclopoid copepods of the “Rassenkreise” Diacylops languidoides, triclads of the genus Polycelis, some amphipods of the genus Niphargus, and asellid isopods.

The central Apennines have a rich and diverse invertebrate stygo fauna, with a balanced proportion of northern and southern elements; moreover, in this region we can find elements with West-European affinities, such as the gastropod Arganiella pescei that is close to the French species Valvata exilis; species that show trans-adriatic affinities, viz. the amphipods of the “oricinus” complex; other species, such as the asellid isopod Proasellus vognai and the cyclopoid copepod Gasteriertella unisetigera show affinities with north-west Apennine or Alpine species. This part of the Apennines is characterized by a striking number of endemics or rare species, among the following groups: asellid isopods (Proasellus acutianus, P. adriaticus, P. amiterinus, P. vognai and a P. sp. that we recently collected in phreatic waters of Umbria); cyclopoid copepods (Eucyclops subterraneus, Acanthocyclops venustus italicus, Diacylops languidoides aprutinus); syncarids (Meridiobathynella cf. rouchi, M. sp.); triclad turbellarians (Dendrocoelum benazzi) and oligochates (Peloscolex pescei and Haplotaxis gordoiides).

Besides the above groups and species, a most significative feature of this region is the high number of stygobiont harpacticoid copepods, many of them endemic for the central Apennines: Nitocrella juturna, N. achaiae, N. stammeri, N. morettii, Parastenocaris pasquinii, P. proserpina, P. amyclaea, P. veneris, Elaphoidella tiberina, Kliopsyllus minutus, Ichthusella pasquinii, Apodopsyllus lyncorum.

For the most part the stygobionts of this region colonized the groundwaters at a rather recent age (Pleistocene) directly from surface fresh waters, due to the dry climate that occurred during the interglacial periods; other ones are directly sea-originated or “thalassoid” species.

The southern Apennines includes a composite stygo fauna, that is characteristically very scarce in stygobionts, some groups (amphipods of the genus Niphargus, asellid isopods, gastropods and triclud turbellarians) becom-
ing very rare. On the other hand, many stygophiles and “thalassoid” species, as well as some very interesting stygobionts or eustygophiles, may be found among the copepods (Acanthocyclops agamus, Speocyclops italicus and Diacyclops languidoides magysaloensis), the microcerberid isopods (Microcerberus arenicola) and the water mites (Lobohalacarus weberi).

The Sardinian province, notwithstanding the limited and discontinuous extent of karstic areas is remarkable due to the great diversity and old age (Palaeozoic and Mesozoic) of the Sardinian karst, which gave rise to a considerable number of different, sometimes well separated underground aquatic systems, viz. inland and coastal caves, deep and superficial phreatic networks, large hyporheic systems, underground rivers, etc.

From a biogeographical point of view, this province holds a typical western stygofauna, that shows close affinities with French groundwater fauna, sharing with this country some stygobionts such as the copepods Acanthocyclops brachyatus, Halicyclops troglodites, Metacyclops subdolus, Parapseudooleptomesochra minoricae and the amphipod Salentinella angelieri; it includes, as well, a great number of exclusive or rare species among different taxonomic groups, such as: cyclopid copepods (Speocyclops sardus); harpacticoid copepods (Nitocrella beatrisci, Elaphoidella oglasae, Ichneusella eionae, Arenopontia nesiae, A. subterranea, Delamarella galateae, and a considerable number of species of the genus Parastenocaris); ostracods (Mixtacandona chappuisi, M. cottarelлина); asellid isopods (Proasellus pratiri); stenasellid isopods (Stenasellus nuragicus, S. assorgiai); amphipods (Ivanella inexpectata, Orchestia remyi, Bogidiella vaneli, B. silverii, B. ichtnusae); syncarids (Sardobathynella cottarelлии) and water mites (Acherontacarus cicolani) ; other species which can be found in this province are southern elements or vicariant species, that are assumed to be recent immigrants in the groundwater of this province, whose colonization is supposed to coincide with the quaternary connection between Sardinia and continental Italy (Tuscany).

The Apulian province shows a marked individuality due to the large extent and the peculiar characteristics of its carbonate rocks, as well as to the different groundwater systems that have evolved in them. The distribution of stygobionts in this province demonstrates the continuity of the Salentine peninsula and the Murge groundwater as well as the difficulty of faunal exchanges between this area and the Gargano district (Ariani, 1982). In this respect, we must stress that a remarkable richness of groundwater animals, for the most part stygobionts and endemics, occur in the Salento-Murge complex; on the other hand very few stygobionts can be found in the Gargano district, from which mainly stygophiles or stygoxenes, sometimes “thalassoid” elements, have been reported.

The Apulian province, as a whole, is characterized by a strikingly abundant and differentiated groundwater fauna, with a great number of ancient, specialized and rare stygobionts, the majority of them exclusive for this area and representing the most ancient and important elements of Italy’s stygo-
fauna. With the Apennine province, the Apulia shares only a few, recent stygobiants or eustygophiles, such as some cyclopid and harpacticoid copepods (Diacyclops antrincola, Thermocyclus oblongatus, Diacyclops languidoides s.l., Nitocrella stammeri, Parapseudoleptomesochra statica), the amphipods Niphargus longicaudatus, N. orcinus s.l., Rhipidogammarus rhipidiophorus and Salentinella angelieri, and numerous stygophiles or stygoxenes.

The stygobiants of Apulia show different origin and geological age: the most ancient stygobiants, such as the species of the genera Mixtacandona, Monodella, Spelaemysis, Stygiomysis, Hadzia, Microcharon, Metaingolfiella, Typhlocaris, Salentinella (only the species S. gracillima), are palaeomediterranean elements, that colonized the groundwater of this province during the ‘‘Tethys’’ period; other ones, such as the cyclopid copepods Halicyclops dalmatinus, Diacyclops antrincola, Thermocyclus oblongatus, Metacyclops stammeri and Laophonte spelaea and the amphipods Niphargus orcinus s.l., Pseudoniphargus adriaticus, Salentinella angelieri and Rhipidogammarus karamani, colonized the underground aquatic environments of Apulia at a rather recent age, as it is shown by their marked euryhalinity and wide perimediterranean distribution; moreover, a significant number of species, both stygobiontes or eustygophiles, are assumed to have colonized the Apulian groundwaters according to the ‘‘regression model evolution’’ (Stock, 1977). As regards the origin of the remarkable ostracod Pseudolimnocythere hypogaea, according to Danielopol (1980) two current hypotheses can be proposed, viz. this species could have colonized the Apulian groundwaters during Miocene marine regressions, or in the course of a Pleistocene regressive phase; according to the author, none of the above hypotheses could be refuted.

The Sicilian province, in spite of its great speleological interest, due to the presence of some extensive karstic areas, as well as several karstic and volcanic caves and other diversified groundwater habitats, is, up to now, still very poorly known from a stygofaunistic standpoint. In particular, there are surprisingly few recorded data concerning stygobiants of this province, the most information being available on stygophiles, stygoxenes or terrestrial groups of animals (Karaman & Ruffo, 1977; Cottarelli & Fasano, 1978; Caruso & Costa, 1978; Caruso, 1982).

To date, as far as we know, true stygobiants from this province are only the amphipods Sarothrogammarus catacumbae and Niphargus longicaudatus, the harpacticoid copepod Nitocrella stammeri, the isopod Typhlocirolana cf. moraguesi and a thermosbaenacean species (Monodella sp.).

Nevertheless, this list will be certainly extended, since recent stygofaunistic research in this province, carried out by the Zoological Institutes of the Universities of Catania and Rome, seem to indicate that the stygofauna of Sicily could be more rich and diversified than previously thought.
LITERATURE

Pollini, c., 1816. Viaggio al lago di Garda e al monte Baldo: 1-152. (Verona, Mainardi.)
—, 1951. Rinvenimento di Gammarus (Neogammarus) rhipidiophorus nelle acque sotterra-
Sc. nat., 30: 115-127.
—, 1955. Le attuali conoscenze sulla fauna cavernicola della regione Pugliese. Mem. Biogeo-
grafia Adriatica, 3: 1-143.
—, 1958. Speleo fauna regionali e biogeografia italiana. Le caratteristiche della fauna caverni-
cola pugliese in rapporto alla paleogeografia della regione Adriatica. Actes II Congr. Int.
Speleol., Bar. 2: 7-30.
—, 1960. Contributo alla conoscenza dei Crostacei Anfipodi delle acque sotterranee della Sar-
273-319.
—, 1968. Descrizione di Metaingolfelia mirabilis n. gen. n. sp. (Crustacea Amphipoda, Metaingolfeliidae fam. nova) delle acque sotterranee del Salento nell'Italia meridionale.
7: 585-585.
139-169.
RUFFO S. & A. VIGNA TAGLIANTI, 1968. Alcuni Niphargus dell'Italia centro meridionale e consi-
Entom., 11: 73-82.
SAMBUGAR, B., 1970. La fauna interziale iporifica del fiume Piave con particolare riferimento
Paris: 151-177.
SBORDONI, V., 1971. Osservazioni biogeografiche sulla fauna cavernicola dell'Appennino cen-
SBORDONI, V. & M. COBOLLI SBORDONI, 1975. Attuali conoscenze sulla fauna cavernicola
SBORDONI, V., E. DE MATTHEISES & M. COBOLLI SBORDONI, 1976. Variabilità genetica in popo-
SCHELLENBERG, A. 1935. Schlüssel der Amphipodengattung Niphargus mit Fundortangaben
SCIACCHITANO, I., 1948. Raccolte faunistiche compiute nel Gargano da A. Ghigi e F. P. Pomini,
SERBAS, E., 1973a. Sur les Bathynellidae (Podophalocarida Bathynellacea) de l'Italie: Bathy-
nella ruffoi nov. sp. et Bathynella lombardica nov. sp. Mem. Mus. civ. St. nat. Verona, 20:
17-37.
—, 1973b. Sur les Bathynellidae de l'Italie, 2. Sardobathynella cattarelli n.g. et n. sp.
—, 1977. Sur les Bathynellidae (Podophalocarida, Bathynellacea) de l'Italie: Meridio-
17-35.
STAMMER, H. J., 1990. Eine neue Höhlensporenmide aus dem Karst, Monolistra (Typhlosphe-
STYGEOLOGIA 1 (2) 1985

Received: 1 July 1984.